Задача о неэквивалентности регулярных выражений
Материал из WikiGrapp
Задача о неэквивалентности регулярных выражений (Regular expression nonequivalence problem) — одна из основных [math]\displaystyle{ \mathcal NP }[/math]-полных задач. Формулируется следующим образом.
У с л о в и е. Заданы конечный алфавит [math]\displaystyle{ \Sigma }[/math] и два регулярных выражения [math]\displaystyle{ E_1 }[/math] и [math]\displaystyle{ E_2 }[/math] над алфавитом [math]\displaystyle{ \Sigma }[/math].
В о п р о с. Верно ли, что [math]\displaystyle{ E_1 }[/math] и [math]\displaystyle{ E_2 }[/math] представляют различные языки?
См. также
- Задача о вершинном покрытии,
- Задача о выполнимости,
- Задача о клике,
- Задача о разбиении,
- Задача о точном покрытии 3-множествами,
- Задача о трехмерном сочетании,
- Классы [math]\displaystyle{ \mathcal P }[/math] и [math]\displaystyle{ \mathcal NP }[/math],
- Метод локальной замены,
- Метод построения компонент,
- Метод сужения задачи,
- Полиномиальная сводимость (трансформируемость),
- [math]\displaystyle{ \mathcal NP }[/math]-полная задача,
- Труднорешаемая задача.
Литература
- Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. — М.: Мир, 1979.
- Касьянов В.Н. Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995.