Жадные алгоритмы аппроксимации: различия между версиями

Перейти к навигации Перейти к поиску
Строка 70: Строка 70:
Напротив, предположим, что свойство (1) выполняется для любого <math>x \in B \;</math> и <math>A \subseteq B \;</math>. Пусть C и D – два множества и <math>C \setminus D = \{ x_1, ..., x_k \}</math>. Тогда
Напротив, предположим, что свойство (1) выполняется для любого <math>x \in B \;</math> и <math>A \subseteq B \;</math>. Пусть C и D – два множества и <math>C \setminus D = \{ x_1, ..., x_k \}</math>. Тогда


 
<math>f(C \cup D) - f(D) = \sum_{i=1}^k \Delta_{x_i} f(D \cup \{ x_1, ..., x_{i - 1} \} )</math> <math>\le \sum_{i=1}^k \Delta_{x_i} f((C \cap D) \cup \{ x_1, ..., x_{i - 1} \} )</math> <math>= f(C) - f(C \cap D)</math>.




4551

правка

Навигация