4501
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 72: | Строка 72: | ||
<math>f(C \cup D) - f(D) = \sum_{i=1}^k \Delta_{x_i} f(D \cup \{ x_1, ..., x_{i - 1} \} )</math> <math>\le \sum_{i=1}^k \Delta_{x_i} f((C \cap D) \cup \{ x_1, ..., x_{i - 1} \} )</math> <math>= f(C) - f(C \cap D)</math>. | <math>f(C \cup D) - f(D) = \sum_{i=1}^k \Delta_{x_i} f(D \cup \{ x_1, ..., x_{i - 1} \} )</math> <math>\le \sum_{i=1}^k \Delta_{x_i} f((C \cap D) \cup \{ x_1, ..., x_{i - 1} \} )</math> <math>= f(C) - f(C \cap D)</math>. | ||
Если функция f является монотонно возрастающей, то <math>A \subseteq B \;</math> влечет <math>f(A) \le f(B)</math>. Следовательно, для <math>x \in B \;</math>, | |||
<math>\Delta_x f(A) \ge 0 = \Delta_x f(B)</math>. | |||
Напротив, если Axf(A) > Axf(B) для любого x 2 B и А С B, тогда для любых x и A, Axf(A) > Axf(AU{x}) = 0, то есть f(A) < /(A U xg). Пусть B - A = fx 1..: ; xk g. Тогда | Напротив, если Axf(A) > Axf(B) для любого x 2 B и А С B, тогда для любых x и A, Axf(A) > Axf(AU{x}) = 0, то есть f(A) < /(A U xg). Пусть B - A = fx 1..: ; xk g. Тогда | ||
f(A) </(AU | f(A) </(AU |
правка