Граф (неориентированный граф)

Материал из WikiGrapp

Граф (неориентированный граф) (Graph (undirected graph)) — это


1. Пара [math]\displaystyle{ (V,E) }[/math], где [math]\displaystyle{ V }[/math] — непустое множество объектов некоторой природы, называемых вершинами графа, а [math]\displaystyle{ E }[/math] — подмножество двухэлементных подмножеств множества [math]\displaystyle{ V }[/math], называемых ребрами графа. Множества вершин и ребер графа [math]\displaystyle{ G }[/math] обозначают [math]\displaystyle{ V(G) }[/math] и [math]\displaystyle{ E(G) }[/math] соответственно. Если [math]\displaystyle{ |V(G)| = n }[/math] и [math]\displaystyle{ |E(G)| = m }[/math], то говорят о [math]\displaystyle{ (n,m) }[/math]-графе [math]\displaystyle{ G }[/math].

2. Пара [math]\displaystyle{ (V,E) }[/math], где [math]\displaystyle{ V }[/math] — множество вершин графа, а [math]\displaystyle{ E }[/math] — множество ребер — есть подмножество множества [math]\displaystyle{ V_{-}^{2} / \sim }[/math] классов эквивалентности, на которые множество [math]\displaystyle{ V_{-}^{2} = \{(v,w) | v \neq w \} }[/math] разбивается отношением эквивалентности: [math]\displaystyle{ (v_{1},w_{1}) \sim (v_{2},w_{2}) \Leftrightarrow (v_{1},w_{1}) = (v_{2},w_{2}) }[/math] или [math]\displaystyle{ (v_{1},w_{1}) = (w_{2},v_{2}). }[/math]

Graph.png

3. Тройка [math]\displaystyle{ (V,E,P) }[/math], где [math]\displaystyle{ V }[/math] — множество вершин, [math]\displaystyle{ E }[/math] — множество объектов некоторой природы, отличной от природы вершин, называемых ребрами, [math]\displaystyle{ P }[/math]инцидентор, сопоставляющий с каждым ребром [math]\displaystyle{ e \in E }[/math] пару граничных вершин [math]\displaystyle{ v }[/math] и [math]\displaystyle{ w }[/math] из [math]\displaystyle{ V }[/math].

4. Общее название как для неориентированного, так и для ориентированного графов.

См. также

Литература

  • Лекции по теории графов / В.А.Емеличев, О.И.Мельников, В.И.Сарванов, Р.И.Тышкевич. — М.: Наука, 1990.