Strongly chordal graph
Strongly chordal graph --- строго хордальный граф.
A vertex [math]\displaystyle{ v }[/math] of a graph [math]\displaystyle{ G }[/math] is simple, if the set [math]\displaystyle{ \{N[u]: \; u \in N[v]\} }[/math] is totally ordered by inclusion. A linear ordering [math]\displaystyle{ (v_{1}, \ldots, v_{n}) }[/math] of [math]\displaystyle{ V }[/math] is a simple elimination ordering of [math]\displaystyle{ G }[/math], if for all [math]\displaystyle{ i \in \{1, \ldots, n\} }[/math] [math]\displaystyle{ v_{i} }[/math] is simple in [math]\displaystyle{ G_{i} }[/math], where [math]\displaystyle{ G_{i} }[/math] is a graph induced by [math]\displaystyle{ \{v_{i}, \ldots, v_{n}\} }[/math]. A graph is strongly chordal graph if it admits a simple elimination ordering.
A strongly chordal graph is a trampoline-free chordal graph.