Alt: различия между версиями

Перейти к навигации Перейти к поиску
нет описания правки
(Создана новая страница размером То же, что и Альт.)
 
Нет описания правки
Строка 1: Строка 1:
То же, что и [[Альт]].
'''Alt''' --- альт, альтернативный фрагмент, закрытый фрагмент.
 
An '''alt''' is a ''fragment''with a single ''initial node''.
 
Let <math>A</math> be a set of alts of a ''cf-graph''<math>G</math> that contains <math>H_1</math> and <math>H_2</math>.
<math>H_1</math> is '''immediately embedded''' in <math>H_2</math> with respect to <math>A</math> if <math>H_1\subset H_2</math>
and there is no alt <math>H_3\in A</math> such that <math>H_1\subset H_3\subset H_2</math>.
<math>H_1</math> is called an '''internal''' alt with respect to <math>A</math> if there is no alt in <math>A</math>
immediately embedded in <math>H</math>, and an '''external''' alt with respect to <math>A</math>
if there is no alt in <math>A</math>, into which <math>H</math> is immediately embedded.
 
A set of nontrivial alts <math>A</math> is called a '''nested set of alts''' (or
'''hierarchy of embedded alts''') of the cf-graph <math>G</math>
if <math>G\in A</math> and, for any pair of alts from <math>A</math>, either their intersection is empty or
one of them is embedded in the other.
 
A sequence of cf-graphs <math>G_0, G_1, \ldots, G_r</math> is called a representation of
the cf-graph <math>G</math> in the form of a nested set of alts <math>A</math> ('''<math>A</math>-representation of the cf-graph <math>G</math>''') if <math>G_0=G</math>, <math>G_r</math> is a trivial graph and for any <math>i>0</math>, <math>G_i</math> is
a factor cf-graph <math>B_i(G)</math>,
where <math>B_i</math> is the set of all external alts with respect to <math>\cup \{A_j: j\in [1,i]\}</math> and
<math>A_j</math> is the set of all internal alts with respect to
<math>A\setminus (\cup \{A_k: k\in [1,i))\}</math>.
4189

правок

Навигация