4194
правки
Glk (обсуждение | вклад) Нет описания правки |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Alt''' | '''Alt''' — [[альт]], [[альтернативный фрагмент]], [[закрытый фрагмент]]. | ||
An '''alt''' is a ''fragment''with a single ''initial node''. | An '''alt''' is a ''[[fragment]]'' with a single ''[[initial node]]''. | ||
Let <math>A</math> be a set of alts of a ''cf-graph''<math>G</math> that contains <math>H_1</math> and <math>H_2</math>. | Let <math>\,A</math> be a set of alts of a ''[[cf-Graph|cf-graph]]'' <math>\,G</math> that contains <math>\,H_1</math> and <math>\,H_2</math>. | ||
<math>H_1</math> is '''immediately embedded''' in <math>H_2</math> with respect to <math>A</math> if <math>H_1\subset H_2</math> | <math>\,H_1</math> is '''immediately embedded''' in <math>\,H_2</math> with respect to <math>\,A</math> if <math>H_1\subset H_2</math> | ||
and there is no alt <math>H_3\in A</math> such that <math>H_1\subset H_3\subset H_2</math>. | and there is no alt <math>H_3\in A</math> such that <math>H_1\subset H_3\subset H_2</math>. | ||
<math>H_1</math> is called an '''internal''' alt with respect to <math>A</math> if there is no alt in <math>A</math> | <math>\,H_1</math> is called an '''internal''' alt with respect to <math>\,A</math> if there is no alt in <math>\,A</math> | ||
immediately embedded in <math>H</math>, and an '''external''' alt with respect to <math>A</math> | immediately embedded in <math>\,H</math>, and an '''external''' alt with respect to <math>\,A</math> | ||
if there is no alt in <math>A</math>, into which <math>H</math> is immediately embedded. | if there is no alt in <math>\,A</math>, into which <math>\,H</math> is immediately embedded. | ||
A set of nontrivial alts <math>A</math> is called a '''nested set of alts''' (or | A set of nontrivial alts <math>\,A</math> is called a '''nested set of alts''' (or | ||
'''hierarchy of embedded alts''') of the cf-graph <math>G</math> | '''hierarchy of embedded alts''') of the cf-graph <math>\,G</math> | ||
if <math>G\in A</math> and, for any pair of alts from <math>A</math>, either their intersection is empty or | if <math>G\in A</math> and, for any pair of alts from <math>\,A</math>, either their intersection is empty or | ||
one of them is embedded in the other. | one of them is embedded in the other. | ||
A sequence of cf-graphs <math>G_0, G_1, \ldots, G_r</math> is called a representation of | A sequence of cf-graphs <math>G_0, G_1, \ldots, G_r</math> is called a representation of | ||
the cf-graph <math>G</math> in the form of a nested set of alts <math>A</math> ('''<math>A</math>-representation of the cf-graph <math>G</math>''') if <math>G_0=G</math>, <math>G_r</math> is a trivial graph and for any <math>i>0</math>, <math>G_i</math> is | the cf-graph <math>\,G</math> in the form of a nested set of alts <math>\,A</math> ('''<math>\,A</math>-representation of the cf-graph <math>\,G</math>''') if <math>\,G_0=G</math>, <math>\,G_r</math> is a [[trivial graph]] and for any <math>\,i>0</math>, <math>\,G_i</math> is | ||
a factor cf-graph <math>B_i(G)</math>, | a factor cf-graph <math>\,B_i(G)</math>, | ||
where <math>B_i</math> is the set of all external alts with respect to <math>\cup \{A_j: j\in [1,i]\}</math> and | where <math>\,B_i</math> is the set of all external alts with respect to <math>\cup \{A_j: j\in [1,i]\}</math> and | ||
<math>A_j</math> is the set of all internal alts with respect to | <math>\,A_j</math> is the set of all internal alts with respect to | ||
<math>A\setminus (\cup \{A_k: k\in [1,i))\}</math>. | <math>A\setminus (\cup \{A_k: k\in [1,i))\}</math>. |