Аппроксимация метрических пространств древесными метриками: различия между версиями

Перейти к навигации Перейти к поиску
м
нет описания правки
мНет описания правки
Строка 3: Строка 3:


== Постановка задачи ==
== Постановка задачи ==
Задача заключается в построении метрики случайного дерева, вероятностно аппроксимирующей заданную произвольную метрику достаточно хорошим образом. Решение этой задачи применяется в качестве первого этапа выполнения многочисленных алгоритмов аппроксимации, поскольку решать задачи на деревьях обычно проще, чем на графах общего вида. Кроме того, оно применяется в оперативных и распределенных вычислениях.
Задача заключается в построении метрики случайного дерева, вероятностно аппроксимирующей заданную произвольную метрику достаточно хорошим образом. Решение этой задачи применяется в качестве первого этапа выполнения многочисленных аппроксимационных алгоритмов, поскольку решать задачи на деревьях обычно проще, чем на графах общего вида. Кроме того, оно применяется в оперативных и распределенных вычислениях.




Строка 28: Строка 28:




Впоследствии Бартал определил класс древесных метрик, названных вполне разделенными иерархически деревьями (hierarchically well-separated trees, HST), следующим образом. ''Вполне разделенное k-иерархическое дерево'' (k-HST) представляет собой корневое взвешенное дерево, обладающее следующими двумя свойствами: веса ребер, ведущих от любой вершины к ее потомкам, равны; веса ребер на любом пути от вершины к листу уменьшаются не менее чем в k раз. Эти свойства важны для многих алгоритмов аппроксимации.
Впоследствии Бартал определил класс древесных метрик, названных вполне разделенными иерархически деревьями (hierarchically well-separated trees, HST), следующим образом. ''Вполне разделенное k-иерархическое дерево'' (k-HST) представляет собой корневое взвешенное дерево, обладающее следующими двумя свойствами: веса ребер, ведущих от любой вершины к ее потомкам, равны; веса ребер на любом пути от вершины к листу уменьшаются не менее чем в k раз. Эти свойства важны для многих аппроксимационных алгоритмов.




Строка 61: Строка 61:




После выхода статьи Бартала в 1996 году было найдено множество применений алгоритмов аппроксимации. Многие из них позволяют решать задачи на древесных метриках или HST-метриках. Аппроксимируя метрики общего вида при помощи этих метрик, можно превратить их в алгоритмы для метрик общего вида, как правило, с потерей только члена O(log n) в коэффициенте аппроксимации. В качестве примеров можно упомянуть разметку при помощи метрики, построение сетей с применением «оптового» подхода и группировку деревьев Штейнера. Среди новых областей применения стоит отметить алгоритм аппроксимации для Unique Games [12], проектирование информационных сетей [13] и сетей с рассеянной маршрутизацией [11].
После выхода статьи Бартала в 1996 году было найдено множество применений аппроксимационных алгоритмов. Многие из них позволяют решать задачи на древесных метриках или HST-метриках. Аппроксимируя метрики общего вида при помощи этих метрик, можно превратить их в алгоритмы для метрик общего вида, как правило, с потерей только члена O(log n) в коэффициенте аппроксимации. В качестве примеров можно упомянуть разметку при помощи метрики, построение сетей с применением «оптового» подхода и группировку деревьев Штейнера. Среди новых областей применения стоит отметить аппроксимационный алгоритм для Unique Games [12], проектирование информационных сетей [13] и сетей с рассеянной маршрутизацией [11].




4551

правка

Навигация