4501
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) мНет описания правки |
||
Строка 3: | Строка 3: | ||
== Постановка задачи == | == Постановка задачи == | ||
Задача заключается в построении метрики случайного дерева, вероятностно аппроксимирующей заданную произвольную метрику достаточно хорошим образом. Решение этой задачи применяется в качестве первого этапа выполнения многочисленных алгоритмов | Задача заключается в построении метрики случайного дерева, вероятностно аппроксимирующей заданную произвольную метрику достаточно хорошим образом. Решение этой задачи применяется в качестве первого этапа выполнения многочисленных аппроксимационных алгоритмов, поскольку решать задачи на деревьях обычно проще, чем на графах общего вида. Кроме того, оно применяется в оперативных и распределенных вычислениях. | ||
Строка 28: | Строка 28: | ||
Впоследствии Бартал определил класс древесных метрик, названных вполне разделенными иерархически деревьями (hierarchically well-separated trees, HST), следующим образом. ''Вполне разделенное k-иерархическое дерево'' (k-HST) представляет собой корневое взвешенное дерево, обладающее следующими двумя свойствами: веса ребер, ведущих от любой вершины к ее потомкам, равны; веса ребер на любом пути от вершины к листу уменьшаются не менее чем в k раз. Эти свойства важны для многих алгоритмов | Впоследствии Бартал определил класс древесных метрик, названных вполне разделенными иерархически деревьями (hierarchically well-separated trees, HST), следующим образом. ''Вполне разделенное k-иерархическое дерево'' (k-HST) представляет собой корневое взвешенное дерево, обладающее следующими двумя свойствами: веса ребер, ведущих от любой вершины к ее потомкам, равны; веса ребер на любом пути от вершины к листу уменьшаются не менее чем в k раз. Эти свойства важны для многих аппроксимационных алгоритмов. | ||
Строка 61: | Строка 61: | ||
После выхода статьи Бартала в 1996 году было найдено множество применений алгоритмов | После выхода статьи Бартала в 1996 году было найдено множество применений аппроксимационных алгоритмов. Многие из них позволяют решать задачи на древесных метриках или HST-метриках. Аппроксимируя метрики общего вида при помощи этих метрик, можно превратить их в алгоритмы для метрик общего вида, как правило, с потерей только члена O(log n) в коэффициенте аппроксимации. В качестве примеров можно упомянуть разметку при помощи метрики, построение сетей с применением «оптового» подхода и группировку деревьев Штейнера. Среди новых областей применения стоит отметить аппроксимационный алгоритм для Unique Games [12], проектирование информационных сетей [13] и сетей с рассеянной маршрутизацией [11]. | ||
правка