Квантование цепей Маркова: различия между версиями

Перейти к навигации Перейти к поиску
Строка 85: Строка 85:
Из теорем 2 и 3 вытекает большинство результатов предыдущего раздела о квантовом времени достижения цели ''без вычислений'', опираясь только на оценки соответствующих классических алгоритмов времени достижения. Выражение (1) основано на фундаментальной связи между собственными значениями и собственными векторами P и <math>W_P</math>. Заметим, что <math>R_1</math> и <math>R_2</math> являются отражениями на подпространствах, порожденных <math> \{ |p_x \rangle \otimes | x \rangle | x \in S \}</math> и <math> \{ |x \rangle \otimes | p_x \rangle | x \in S \}</math>, соответственно. Следовательно, собственные значения <math>R_1 R_2</math> могут быть выражены в терминах собственных значений взаимной матрицы Грама этих систем. Эта матрица D, ''матрица дискриминантов'' P, имеет вид:
Из теорем 2 и 3 вытекает большинство результатов предыдущего раздела о квантовом времени достижения цели ''без вычислений'', опираясь только на оценки соответствующих классических алгоритмов времени достижения. Выражение (1) основано на фундаментальной связи между собственными значениями и собственными векторами P и <math>W_P</math>. Заметим, что <math>R_1</math> и <math>R_2</math> являются отражениями на подпространствах, порожденных <math> \{ |p_x \rangle \otimes | x \rangle | x \in S \}</math> и <math> \{ |x \rangle \otimes | p_x \rangle | x \in S \}</math>, соответственно. Следовательно, собственные значения <math>R_1 R_2</math> могут быть выражены в терминах собственных значений взаимной матрицы Грама этих систем. Эта матрица D, ''матрица дискриминантов'' P, имеет вид:


(2) <math> D(P) = \sqrt{P \circ P_T} = (\sqrt{p_{x, y} p_{y, x}})_{x, y \in S}.</math>
(2) <math> D(P) = \sqrt{P \circ P_T} \; \stackrel{\mathrm{def}}{=} \; (\sqrt{p_{x, y} p_{y, x}})_{x, y \in S}.</math>




4551

правка

Навигация