4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 45: | Строка 45: | ||
Исходный FM-индекс налагает серьезные ограничения на размер алфавита. В последующих работах эти ограничения были устранены. С концептуальной точки зрения самый простой способ добиться более дружественного к алфавитам экземпляра FM-индекса заключается в построении дерева вейвлетов [ ] на <math>T^{bwt}</math>. Это бинарное дерево | Исходный FM-индекс налагает серьезные ограничения на размер алфавита. В последующих работах эти ограничения были устранены. С концептуальной точки зрения самый простой способ добиться более дружественного к алфавитам экземпляра FM-индекса заключается в построении ''дерева вейвлетов'' [5] на <math>T^{bwt}</math>. Это бинарное дерево над алфавитом <math>\Sigma</math>, устроенное таким образом, что каждый узел v обрабатывает подмножество алфавита S(v), которое делит между своими детьми. Корень обрабатывает <math>\Sigma</math>, а каждый лист обрабатывает один символ. Каждый узел v кодирует такие позиции i таким образом, что <math>T^{bwt}[i] \in S(v)</math>. Для этих позиций в узле v хранится только битовый вектор, указывающий, какая из них направляется налево, а какая – направо. Битовые векторы узла предварительно обрабатываются для выполнения запросов <math>rank_1()</math> за константное время, используя o(n)-битные структуры данных [6, 12]. Гросси и др. [4] показали, что дерево вейвлетов, построенное с использованием кодировки [12], занимает <math>nH_0 + o(n \; log \; \sigma)</math> бит. После этого легко смоделировать один запрос <math>rank_c()</math> при помощи <math>log_2 \; \sigma</math> запросов <math>rank_1()</math>. С теми же затратами можно получить <math>T^{bwt}[i]</math>. Более поздние усовершенствования улучшили требования по времени, позволив получить, например, следующий результат: | ||
правка