Индексирование сжатого текста

Материал из WEGA
Перейти к навигации Перейти к поиску

Ключевые слова и синонимы

Экономичное по объему памяти индексирование текста (Space-efficient text indexing); полнотекстовое индексирование сжатого текста (Compressed full-text indexing); само-индексирование (Self-indexing)

Постановка задачи

Пусть дана текстовая строка [math]\displaystyle{ T = t_1 t_2... t_n }[/math] над алфавитом [math]\displaystyle{ \Sigma }[/math] размера [math]\displaystyle{ \sigma }[/math]. Задача индексирования сжатого текста (compressed text indexing, CTI) заключается в замене строки T экономичной с точки зрения используемой памяти структурой данных, способной эффективно отвечать на основные запросы по сравнению строк и подстрок над T. Примеры типичных запросов, требующих ответов с использованием подобного индекса:

• count(P): подсчитать, сколько раз заданная строка шаблона [math]\displaystyle{ P = p_1 p_2... p_m }[/math] встречается в T.

• locate(P): вернуть местоположения всех вхождений P в T.

• display(i, j): вернуть T[i, j].

Основные результаты

Изящное решение задачи достигается за счет применения комбинации преобразования Барроуза-Уилера (Burrows-Wheeler Transform, BWT) [1] и структуры данных в виде суффиксного массива [9]. Суффиксный массив SA[1, n] строки T представляет собой перестановку текстовых позиций (1...n), в которой суффиксы T[i, n] перечислены в лексикографическом порядке. Таким образом, T[SA[i], n] – наименьший i-й суффикс. BWT определяется, во-первых, перестановкой [math]\displaystyle{ T^{bwt} }[/math] строки T, определяемой как [math]\displaystyle{ T^{bwt}[i] = T[SA[i] - 1] }[/math], где T[0] = T[n], и во-вторых – числом [math]\displaystyle{ i^* = SA^{-1} }[/math][1].


BWT обладает свойством, заключающимся в том, что символы, имеющие одинаковый контекст (т. е. строки, следующие за ними в T), в [math]\displaystyle{ T^{bwt} }[/math] являются последовательными. Это упрощает сжатие [math]\displaystyle{ T^{bwt} }[/math], позволяя достигать объема памяти, близкого к эмпирическим энтропиям высокого порядка [10]. С другой стороны, суффиксный массив является универсальным текстовым индексом, позволяющим, например, вести подсчет запросов за время O(m log n) (с использованием двух операций бинарного поиска в массиве SA), после чего можно локализовать вхождения за оптимальное время.


Ферраджина и Манзини [3] обнаружили способ объединить высокую сжимаемость BWT и индексирующие свойства суффиксного массива. Предложенная ими структура, в сущности, представляет собой сжатое представление BWT плюс некоторые небольшие дополнительные структуры, делающие его пригодным для поиска.


Сначала мы обратимся к извлечению произвольных подстрок из этого сжатого текстового представления, а затем рассмотрим возможности поиска. Для извлечения из структуры всего текста (то есть для поддержки запроса display(1, n)) достаточно инвертировать BWT. Для этого рассмотрим таблицу LF[1, n], определенную таким образом, что если выполнить перестановку T[i] в [math]\displaystyle{ T^{bwt}[j] }[/math], а T[i - 1] – в [math]\displaystyle{ T^{bwt}[j'] }[/math], то LF[j] = j'. После этого можно сразу же извлечь T в обратном порядке, напечатав [math]\displaystyle{ T^{bwt}[i^*] \cdot T^{bwt}[LF[i^*]] \cdot T^{bwt}[LF[LF[i^*]]] }[/math]... (по определению [math]\displaystyle{ T^{bwt}[i^*] }[/math] соответствует T[n]).


При поиске экономичного по памяти представления пространства массива LF Ферраджина и Манзини заметили, что каждый элемент LF[i] может быть выражен следующим образом:


Лемма 1 (Ферраджина и Манзини, 2005 [3]). [math]\displaystyle{ LF[i] = C(c) + rank_c(i) }[/math], где [math]\displaystyle{ c = T^{bwt}[i] }[/math], C(c) указывает, сколько раз в [math]\displaystyle{ T^{bwt} }[/math] встречаются символы меньше [math]\displaystyle{ c }[/math], а [math]\displaystyle{ rank_c(i) }[/math] – сколько раз символ [math]\displaystyle{ c }[/math] встречается в [math]\displaystyle{ T^{bwt}[1, i] }[/math].


Запросы display(i, j) общего вида основываются на регулярной выборке из текста. Каждая текстовая позиция вида [math]\displaystyle{ j' \cdot s }[/math], где s – частота дискретизации, хранится вместе с [math]\displaystyle{ SA^{-1} [j \cdot s] }[/math], указывающей на нее позицией суффиксного массива. Для выполнения запроса display(i, j) мы начинаем с наименьшей выбранной текстовой позиции [math]\displaystyle{ j' \cdot s \gt j }[/math] и применяем обращение процедуры BWT, начиная с [math]\displaystyle{ SA^{-1} [j \cdot s] }[/math] вместо i*. Это дает нам символы с [math]\displaystyle{ j' \cdot s - 1 }[/math] до i в обратном порядке и требует не более j - i + s шагов.


Кроме того, оказывается, что то же самое двухкомпонентное выражение LF[i] позволяет эффективно выполнять запросы типа count(P). Идея заключается в том, что если известен диапазон суффиксного массива, скажем [math]\displaystyle{ SA[sp_i, ep_i] }[/math], такого что единственными суффиксами, содержащими P[i, m] в качестве префикса, являются суффиксы [math]\displaystyle{ T[SA[sp_i], n], T[SA[sp_i + 1], n], ..., T[SA[ep_i], n] }[/math], то новый диапазон [math]\displaystyle{ SA[sp_{i - 1}, ep_{i - 1}] }[/math], суффиксы которого содержат P[i – 1, m] в качестве префикса, можно вычислить следующим образом: [math]\displaystyle{ sp_{i - 1} = C(P[i - 1]) + rank_{p_{[i - 1]}}(sp_i - 1) + 1 }[/math] и [math]\displaystyle{ ep_{i - 1} = C(P[i - 1]) + rank_{p_{[i- 1]}}(ep_i) }[/math]. После этого достаточно просканировать шаблон в обратном порядке и вычислить значения C() и [math]\displaystyle{ rank_c() }[/math] 2m раз, чтобы определить (возможно, пустой) диапазон суффиксного массива, в котором все суффиксы начинаются с полной строки шаблона P. Возврат [math]\displaystyle{ ep_1 - sp_1 + 1 }[/math] отвечает на запрос count(P), вообще не требуя наличия суффиксного массива.


Для локализации каждого такого вхождения [math]\displaystyle{ SA[i], sp_1 \le i \le ep_1 }[/math], можно вычислить последовательность [math]\displaystyle{ i, LF[i], LF[LF[i]], ... }[/math] до тех пор, пока не будет достигнут [math]\displaystyle{ LF^k [i] }[/math], являющийся выбранной позицией суффиксного массива и, таким образом, явно хранящийся в структуре выборки, предназначенной для запросов display(i, j). Тогда [math]\displaystyle{ SA[i] = SA[LF^k[i]] + k }[/math]. Поскольку мы перемещаемся по тексту практически последовательно, мы не можем сделать в этом процессе более s шагов.


Теперь рассмотрим потребность в памяти. Значения C() можно тривиально хранить в таблице размером [math]\displaystyle{ \sigma \; log_2 \; n }[/math] бит. [math]\displaystyle{ T^{bwt}[i] }[/math] можно вычислить за время [math]\displaystyle{ O(\sigma) }[/math] путем проверки, для какого [math]\displaystyle{ c }[/math] выполняется утверждение [math]\displaystyle{ rank_c(i) \ne rank_c(i - 1) }[/math]. Частоту выборки можно взять в виде [math]\displaystyle{ s = \Theta(log^{1 + \epsilon} \; n) }[/math], так что для выборок потребуется o(n) бит. Единственная реальная проблема заключается в предварительной обработке текста для запросов [math]\displaystyle{ rank_c() }[/math]. В последние годы в этой области велись интенсивные исследования и было предложено множество решений. Первый предложенный алгоритм строит несколько маленьких структур данных с частичной суммой поверх сжатого BWT и достигает следующего результата:


Теорема 2 (Ферраджина и Манзини, 2005 [3]). Задача CTI может быть решена с помощью так называемого FM-индекса (FM-Index, FMI) размером [math]\displaystyle{ 5 n H_k + o(n \; log \; \sigma) }[/math] бит, выполняющего операцию count(P) за время O(m), locate(P) за время [math]\displaystyle{ O(\sigma \; log^{1 + \epsilon} \; n) }[/math] на одно вхождение, а display(i, j) – за время [math]\displaystyle{ O(\sigma(j - i + log^{1 + \epsilon} \; n)) }[/math]. Здесь [math]\displaystyle{ H_k }[/math] – эмпирическая энтропия строки T k-го порядка, [math]\displaystyle{ \sigma = o(log \; n / log \; log \; n), k \le log_{\sigma}(n / log \; n) - \omega(1) }[/math], а [math]\displaystyle{ \epsilon \gt 0 }[/math] – произвольная константа.


Исходный FM-индекс налагает серьезные ограничения на размер алфавита. В последующих работах эти ограничения были устранены. С концептуальной точки зрения самый простой способ получить более дружественный к алфавитам экземпляр FM-индекса заключается в построении дерева вейвлетов [5] на [math]\displaystyle{ T^{bwt} }[/math]. Это бинарное дерево над алфавитом [math]\displaystyle{ \Sigma }[/math], устроенное таким образом, что каждый узел v обрабатывает подмножество алфавита S(v), которое делит между своими детьми. Корень обрабатывает [math]\displaystyle{ \Sigma }[/math], а каждый лист обрабатывает один символ. Каждый узел v кодирует такие позиции i таким образом, что [math]\displaystyle{ T^{bwt}[i] \in S(v) }[/math]. Для этих позиций в узле v хранится только битовый вектор, указывающий, какая из них направляется налево, а какая – направо. Битовые векторы узла предварительно обрабатываются для выполнения запросов [math]\displaystyle{ rank_1() }[/math] за константное время, используя o(n)-битные структуры данных [6, 12]. Гросси и др. [4] показали, что дерево вейвлетов, построенное с использованием кодировки [12], занимает [math]\displaystyle{ nH_0 + o(n \; log \; \sigma) }[/math] бит. После этого легко смоделировать один запрос [math]\displaystyle{ rank_c() }[/math] при помощи [math]\displaystyle{ log_2 \; \sigma }[/math] запросов [math]\displaystyle{ rank_1() }[/math]. С теми же затратами можно получить [math]\displaystyle{ T^{bwt}[i] }[/math]. Более поздние усовершенствования улучшили требования по времени, позволив получить, например, следующий результат:


Теорема 3 (Мэкинен и Наварро, 2005 [3]). Задача CTI может быть решена с помощью так называемого сокращенного суффиксного массива (Succinct Suffix Array, SSA) размером [math]\displaystyle{ nH_0 + o(n \; log \; \sigma) }[/math] бит, выполняющего операцию count(P) за время [math]\displaystyle{ O(m(1 + log \; \sigma / log \; log \; n)) }[/math], locate(P) – за время [math]\displaystyle{ O(log^{1 + \epsilon} \; n \; log \; \sigma / log \; log \; n) }[/math] на одно вхождение, а display(i, j) – за время [math]\displaystyle{ O((j - i + log^{1 + \epsilon} \; n) log \; \sigma / log \; log \; n) }[/math]. Здесь [math]\displaystyle{ H_0 }[/math] – энтропия нулевого порядка для T, [math]\displaystyle{ \sigma = o(n) }[/math], а [math]\displaystyle{ \epsilon \gt 0 }[/math] – произвольная константа.


Ферраджина и др. [2] разработали технику под названием форсирование сжатия (compression boosting), которая находит оптимальное разбиение [math]\displaystyle{ T^{bwt} }[/math], такое, что при сжатии каждого элемента по отдельности с использованием его модели нулевого порядка результат пропорционален энтропии k-го порядка. Этот подход можно совместить с идеей SSA, построив дерево вейвлетов отдельно для каждого отрезка и некоторые дополнительные структуры для решения глобальных запросов [math]\displaystyle{ rank_c() }[/math] для отдельных деревьев вейвлетов:


Теорема 4 ([Ферраджина и др. [4]). Задача CTI может быть решена с помощью так называемого дружественного к алфавитам FM-индекса (Alphabet-Friendly FM-Index, AF-FMI) размером [math]\displaystyle{ nH_k + o(n \; log \; \sigma) }[/math] бит, имеющего ту же временную сложность и те же ограничения, что и SSA, при [math]\displaystyle{ k \le \alpha \; log_{\sigma}\; n }[/math] для любого константного [math]\displaystyle{ 0 \lt \alpha \lt 1 }[/math].


Недавно проведенный анализ [8] показал, что требования к памяти простого алгоритма SSA ограничены тем же количеством бит [math]\displaystyle{ nH_k + o(n \; log \; \sigma) }[/math], что теоретически делает использование форсирования для достижения того же результата излишним. На практике реализации в работах [4, 7] намного превосходят реализации, построенные непосредственно на этой упрощенной идее.

Применение

Анализ последовательностей в биоинформатике, поиск и извлечение в запросах на восточных и агглютинирующих языках, мультимедийных потоках и даже сценариях работы со структурированными и традиционными базами данных.

Ссылки на код и наборы данных

Сайт Pizza-Chili (http://pizzachili.dcc.uchile.cl или http://pizzachili.di.unipi.it) содержит подборку стандартизированных реализаций библиотек, а также наборы данных и результаты экспериментальных сравнений.

См. также

Литература

1. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm. Technical Report 124, Digital Equipment Corporation (1994)

2. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting textual compression in optimal linear time. J. ACM 52(4), 688-713(2005)

3. Ferragina, P. Manzini, G.: Indexing compressed texts. J. ACM 52(4), 552-581 (2005)

4. Ferragina, P., Manzini, G., Makinen, V., Navarro, G.: Compressed representation of sequences and full-text indexes. ACM Trans. Algorithms 3(2) Article 20 (2007)

5. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In: Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 841-850 (2003)

6. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 549-554 (1989)

7. Makinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding. Nord. J. Comput. 12(1),40-66 (2005)

8. Makinen, V., Navarro, G.: Dynamic entropy-compressed se quences and full-text indexes. In: Proc. 17th Annual Symposium on Combinatorial Pattern Matching (CPM). LNCS, vol. 4009, pp. 307-318 (2006) Extended version as TR/DCC-2006-10, Department of Computer Science, University of Chile, July 2006

9. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. SIAM J. Comput. 22(5), 935-948 (1993)

10. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3), 407-430 (2001)

11. Navarro, G., Makinen, V.: Compressed full-text indexes. ACM Comput. Surv. 39(1) Article 2 (2007)

12. Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In: Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 233-242 (2002)