Задача о размещении объектов: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 59: Строка 59:


Алгоритм выполняет LP-релаксацию, а затем в два этапа модифицирует полученное дробное решение. Первый этап, называемый ''фильтрацией'', предназначен для ограничения стоимости соединения каждого клиента с самым удаленным объектом, частично обслуживающим его. Для этого переменные <math>y_i \;</math>, обозначающие стоимость открытия объектов, пропорционально увеличиваются на константную величину, а затем переменные <math>x_{ij} \;</math>, обозначающие стоимость соединения, корректируются для использования ближайших возможных объектов.
Алгоритм выполняет LP-релаксацию, а затем в два этапа модифицирует полученное дробное решение. Первый этап, называемый ''фильтрацией'', предназначен для ограничения стоимости соединения каждого клиента с самым удаленным объектом, частично обслуживающим его. Для этого переменные <math>y_i \;</math>, обозначающие стоимость открытия объектов, пропорционально увеличиваются на константную величину, а затем переменные <math>x_{ij} \;</math>, обозначающие стоимость соединения, корректируются для использования ближайших возможных объектов.


Для второго этапа используется понятие ''кластеризации'', позднее формализованное Чудаком и Шмойсом [13]. Основываясь на дробном решении, экземпляр разбивается на фрагменты, называемые ''кластерами''. У каждого кластера имеется отдельный клиент, называемый ''центром кластера''. Это производится путем итеративного выбора клиента, не охваченного предыдущими кластерами, в качестве центра кластера, и добавления к этому кластеру объектов, обслуживающих этого клиента в дробном решении, а также других клиентов, обслуживаемых этими объектами. Такое построение кластеров гарантирует, что объекты в каждом кластере открыты для количества клиентов, в сумме равного единице и, следовательно, после открытия объекта с наименьшей возможной стоимостью в каждом кластере суммарная уплаченная стоимость открытия объекта не превышает стоимость открытия объекта у дробного решения. Более того, выбирая клиентов в качестве центров кластеров жадным образом, алгоритм добивается того, чтобы каждый центр кластера минимизировал определенную стоимостную функцию для клиентов кластера. Оставшиеся клиента кластера также соединяются с открытым объектом. Для ограничения стоимости этого соединения используется неравенство треугольника для стоимостей соединений. Для задачи UFL этот алгоритм фильтрации и округления представляет собой алгоритм 4-аппроксимации, Шмойс и др. Также показали, что в случае замены этапа фильтрации ''рандомизированной фильтрацией'' можно получить гарантию аппроксимации 3,16.
Для второго этапа используется понятие ''кластеризации'', позднее формализованное Чудаком и Шмойсом [13]. Основываясь на дробном решении, экземпляр разбивается на фрагменты, называемые ''кластерами''. У каждого кластера имеется отдельный клиент, называемый ''центром кластера''. Это производится путем итеративного выбора клиента, не охваченного предыдущими кластерами, в качестве центра кластера, и добавления к этому кластеру объектов, обслуживающих этого клиента в дробном решении, а также других клиентов, обслуживаемых этими объектами. Такое построение кластеров гарантирует, что объекты в каждом кластере открыты для количества клиентов, в сумме равного единице и, следовательно, после открытия объекта с наименьшей возможной стоимостью в каждом кластере суммарная уплаченная стоимость открытия объекта не превышает стоимость открытия объекта у дробного решения. Более того, выбирая клиентов в качестве центров кластеров жадным образом, алгоритм добивается того, чтобы каждый центр кластера минимизировал определенную стоимостную функцию для клиентов кластера. Оставшиеся клиента кластера также соединяются с открытым объектом. Для ограничения стоимости этого соединения используется неравенство треугольника для стоимостей соединений. Для задачи UFL этот алгоритм фильтрации и округления представляет собой алгоритм 4-аппроксимации, Шмойс и др. Также показали, что в случае замены этапа фильтрации ''рандомизированной фильтрацией'' можно получить гарантию аппроксимации 3,16.


В той же статье была выполнена адаптация алгоритма, с применением рандомизированной фильтрации и без нее, с целью получения алгоритмов аппроксимации для задачи о размещении объектов с мягкими ограничениями на пропускную способность, а также для двухуровневой задачи о размещении объектов без ограничений на пропускную способность. Далее будут обсуждаться результаты работы алгоритма с применением рандомизированной фильтрации.
В той же статье была выполнена адаптация алгоритма, с применением рандомизированной фильтрации и без нее, с целью получения алгоритмов аппроксимации для задачи о размещении объектов с мягкими ограничениями на пропускную способность, а также для двухуровневой задачи о размещении объектов без ограничений на пропускную способность. Далее будут обсуждаться результаты работы алгоритма с применением рандомизированной фильтрации.




Были рассмотрены два варианта задачи о размещении объектов с мягкими ограничениями на пропускную способность. Оба предполагают равную пропускную способность, т.е. ui = u для всех i 2 F . В первом варианте решение является «допустимым», если y-переменные либо принимают значение 0, либо имеют значение между 1 и y' > 1. Заметим, что y' не обязательно должно быть целым, так что построенное решение не обязательно является целочисленным. Это можно интерпретировать так, что каждому объекту i дозволяется расширяться, обеспечивая пропускную способность y'u со стоимостью y'fi. Алгоритм (y, y')-аппроксимации представляет собой полиномиальный алгоритм, приводящий к такому допустимому решению, общая стоимость которого не более чем в у раз превышает истинную оптимальную стоимость, а именно, с 2 f0; 1gnf. Шмойс и др. разработали алгоритм (5,69; 4,24)-аппроксимации для варианта этой задачи с возможностью разделения и алгоритм (7,62; 4,29)-аппроксимации для варианта без возможности разделения.
Были рассмотрены два варианта задачи о размещении объектов с мягкими ограничениями на пропускную способность. Оба предполагают равную пропускную способность, т. е. <math>u_i = u \;</math> для всех <math>i \in \mathcal{F}</math>. В первом варианте решение является «допустимым», если y-переменные либо принимают значение 0, либо имеют значение между 1 и y' > 1. Заметим, что y' не обязательно должно быть целым, так что построенное решение не обязательно является целочисленным. Это можно интерпретировать так, что каждому объекту i дозволяется расширяться, обеспечивая пропускную способность y'u со стоимостью y'fi. Алгоритм (y, y')-аппроксимации представляет собой полиномиальный алгоритм, приводящий к такому допустимому решению, общая стоимость которого не более чем в у раз превышает истинную оптимальную стоимость, а именно, с 2 f0; 1gnf. Шмойс и др. разработали алгоритм (5,69; 4,24)-аппроксимации для варианта этой задачи с возможностью разделения и алгоритм (7,62; 4,29)-аппроксимации для варианта без возможности разделения.




4446

правок

Навигация