4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 50: | Строка 50: | ||
== Основные результаты == | == Основные результаты == | ||
Для решения задач о размещении объектов было предложено множество алгоритмов. Вначале будет приведено краткое описание алгоритмов Шмойса, Тардош и Аардал [ ]. Затем будет представлен сжатый обзор основных результатов. Некоторые алгоритмы, дающие наилучшие значения гарантии аппроксимации у, основаны на решении задачи LP-релаксации при помощи полиномиального алгоритма, что может потребовать значительного времени; в то же время некоторые авторы предложили быстрые комбинаторные алгоритмы для задач о размещении объектов с менее привлекательными значениями гарантии y. В свете ограничений на объем занимаемой памяти более эффективно уделять внимание алгоритмам, обеспечивающим наилучшие значения гарантии аппроксимации. Дополнительные ссылки можно найти в обзорных статьях Шмойса [49,50] и Вайгена [55]. | Для решения задач о размещении объектов было предложено множество алгоритмов. Вначале будет приведено краткое описание алгоритмов Шмойса, Тардош и Аардал [51]. Затем будет представлен сжатый обзор основных результатов. Некоторые алгоритмы, дающие наилучшие значения гарантии аппроксимации у, основаны на решении задачи LP-релаксации при помощи полиномиального алгоритма, что может потребовать значительного времени; в то же время некоторые авторы предложили быстрые комбинаторные алгоритмы для задач о размещении объектов с менее привлекательными значениями гарантии y. В свете ограничений на объем занимаемой памяти более эффективно уделять внимание алгоритмам, обеспечивающим наилучшие значения гарантии аппроксимации. Дополнительные ссылки можно найти в обзорных статьях Шмойса [49,50] и Вайгена [55]. | ||
'''Алгоритмы Шмойса, Тардош и Аардал''' | '''Алгоритмы Шмойса, Тардош и Аардал''' | ||
Вначале будет представлен алгоритм решения задачи UFL, а затем перечислены результаты, которые могут быть получены за счет адаптации алгоритма к другим задачам. | Вначале будет представлен алгоритм решения задачи UFL, а затем перечислены результаты, которые могут быть получены за счет адаптации алгоритма к другим задачам. | ||
Алгоритм выполняет LP-релаксацию, а затем в два этапа модифицирует полученное дробное решение. Первый этап, называемый фильтрацией, предназначен для ограничения стоимости соединения каждого клиента с самым удаленным объектом, частично обслуживающим его. Для этого переменные | Алгоритм выполняет LP-релаксацию, а затем в два этапа модифицирует полученное дробное решение. Первый этап, называемый ''фильтрацией'', предназначен для ограничения стоимости соединения каждого клиента с самым удаленным объектом, частично обслуживающим его. Для этого переменные <math>y_i \;</math>, обозначающие стоимость открытия объектов, пропорционально увеличиваются на константную величину, а затем переменные <math>x_{ij} \;</math>, обозначающие стоимость соединения, корректируются для использования ближайших возможных объектов. | ||
Для второго этапа используется понятие кластеризации, позднее формализованное Чудаком и Шмойсом [13]. Основываясь на дробном решении, экземпляр разбивается на фрагменты, называемые кластерами. У каждого кластера имеется отдельный клиент, называемый центром кластера. Это производится путем итеративного выбора клиента, не охваченного предыдущими кластерами, в качестве центра кластера, и добавления к этому кластеру объектов, обслуживающих этого клиента в дробном решении, а также других клиентов, обслуживаемых этими объектами. Такое построение кластеров гарантирует, что объекты в каждом кластере открыты для количества клиентов, в сумме равного единице и, следовательно, после открытия объекта с наименьшей возможной стоимостью в каждом кластере суммарная уплаченная стоимость открытия объекта не превышает стоимость открытия объекта у дробного решения. Более того, выбирая клиентов в качестве центров кластеров жадным образом, алгоритм добивается того, чтобы каждый центр кластера минимизировал определенную стоимостную функцию для клиентов кластера. Оставшиеся клиента кластера также соединяются с открытым объектом. Для ограничения стоимости этого соединения используется неравенство треугольника для стоимостей соединений. Для задачи UFL этот алгоритм фильтрации и округления представляет собой алгоритм 4-аппроксимации, Шмойс и др. Также показали, что в случае замены этапа фильтрации рандомизированной фильтрацией можно получить гарантию аппроксимации 3,16. | Для второго этапа используется понятие ''кластеризации'', позднее формализованное Чудаком и Шмойсом [13]. Основываясь на дробном решении, экземпляр разбивается на фрагменты, называемые ''кластерами''. У каждого кластера имеется отдельный клиент, называемый ''центром кластера''. Это производится путем итеративного выбора клиента, не охваченного предыдущими кластерами, в качестве центра кластера, и добавления к этому кластеру объектов, обслуживающих этого клиента в дробном решении, а также других клиентов, обслуживаемых этими объектами. Такое построение кластеров гарантирует, что объекты в каждом кластере открыты для количества клиентов, в сумме равного единице и, следовательно, после открытия объекта с наименьшей возможной стоимостью в каждом кластере суммарная уплаченная стоимость открытия объекта не превышает стоимость открытия объекта у дробного решения. Более того, выбирая клиентов в качестве центров кластеров жадным образом, алгоритм добивается того, чтобы каждый центр кластера минимизировал определенную стоимостную функцию для клиентов кластера. Оставшиеся клиента кластера также соединяются с открытым объектом. Для ограничения стоимости этого соединения используется неравенство треугольника для стоимостей соединений. Для задачи UFL этот алгоритм фильтрации и округления представляет собой алгоритм 4-аппроксимации, Шмойс и др. Также показали, что в случае замены этапа фильтрации ''рандомизированной фильтрацией'' можно получить гарантию аппроксимации 3,16. | ||
В той же статье была выполнена адаптация алгоритма, с применением рандомизированной фильтрации и без нее, с целью получения алгоритмов аппроксимации для задачи о размещении объектов с мягкими ограничениями на пропускную способность, а также для двухуровневой задачи о размещении объектов без ограничений на пропускную способность. Далее будут обсуждаться результаты работы алгоритма с применением рандомизированной фильтрации. | В той же статье была выполнена адаптация алгоритма, с применением рандомизированной фильтрации и без нее, с целью получения алгоритмов аппроксимации для задачи о размещении объектов с мягкими ограничениями на пропускную способность, а также для двухуровневой задачи о размещении объектов без ограничений на пропускную способность. Далее будут обсуждаться результаты работы алгоритма с применением рандомизированной фильтрации. |
правка