Геометрические остовы: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 59: Строка 59:
'''WSPD-граф'''
'''WSPD-граф'''


Пусть A и B – два конечных множества точек в <math>\mathcal{R}^d</math>. Будем называть A и B ''значительно удаленными'' по отношению к вещественному числу s > 0, если существуют два непересекающихся шара <math>C_A \;</math> и <math>C_B \;</math> одного и того же радиуса, такие, что <math>C_A \;</math> содержит A, <math>C_B \;</math> содержит B, а расстояние между <math>C_A \;</math> и <math>C_B \;</math> по меньшей мере в s раз превышает радиус <math>C_A \;</math>. Значение s называется ''коэффициентом удаления''.
Пусть A и B – два конечных множества точек в <math>\mathcal{R}^d</math>. Будем называть A и B ''значительно удаленными'' по отношению к вещественному числу s > 0, если существуют два непересекающихся шара <math>C_A \;</math> и <math>C_B \;</math> одного и того же радиуса, такие, что <math>C_A \;</math> содержит A, <math>C_B \;</math> содержит B, а расстояние между <math>C_A \;</math> и <math>C_B \;</math> по меньшей мере в s раз превышает радиус <math>C_A \;</math>. Значение s называется ''коэффициентом удаленности''.




Строка 71: Строка 71:




Декомпозицию на значительно удаленные пары разработали Кэллахан и Косарайю [6]. Построение t-остова при помощи этого подхода начинается с построения WSPD-декомпозиции S относительно коэффициента удаления s = (4(t + 1))/(t - 1). Вначале положим остовный граф равным <math>G = (S, \empty) \;</math> и будем итеративно добавлять ребра следующим образом. Для каждой значительно удаленной пары {A, B} из декомпозиции к графу добавляется ребро (a, b), где a и b – произвольные точки из A и B, соответственно. Полученный граф называется WSPD-графом на S.
Декомпозицию на значительно удаленные пары разработали Кэллахан и Косарайю [6]. Построение t-остова при помощи этого подхода начинается с построения WSPD-декомпозиции S относительно коэффициента удаленности s = (4(t + 1))/(t - 1). Вначале положим остовный граф равным <math>G = (S, \empty) \;</math> и будем итеративно добавлять ребра следующим образом. Для каждой значительно удаленной пары {A, B} из декомпозиции к графу добавляется ребро (a, b), где a и b – произвольные точки из A и B, соответственно. Полученный граф называется WSPD-графом на S.




4551

правка

Навигация