Геометрические остовы: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 62: Строка 62:




'''Определение 1 [6]'''. Пусть S – множество точек в пространстве <math>\mathcal{R}^d \;</math>, а s > 0 – вещественное число. ''Декомпозицией значительно удаленных пар'' (well-separated pair decomposition, WSPD) для S относительно s является последовательность <math>\{ A_i, B_i \} , 1 \le i \le m \;</math>, пар непустых подмножеств S, таких, что:
'''Определение 1 [6]'''. Пусть S – множество точек в пространстве <math>\mathcal{R}^d \;</math>, а s > 0 – вещественное число. ''Декомпозицией на значительно удаленные пары'' (well-separated pair decomposition, WSPD) для S относительно s является последовательность <math>\{ A_i, B_i \} , 1 \le i \le m \;</math>, пар непустых подмножеств S, таких, что:


(1) <math>A_i \cap B_i = \empty \;</math> для всех i = 1, 2, ... , m;
(1) <math>A_i \cap B_i = \empty \;</math> для всех i = 1, 2, ... , m;
Строка 71: Строка 71:




Декомпозицию значительно удаленных пар разработали Кэллахан и Косарайю [6]. Построение t-остова при помощи этого подхода начинается с построения WSPD-декомпозиции S относительно коэффициента удаления s = (4(t + 1))/(t - 1). Вначале положим остовный граф равным <math>G = (S, \empty) \;</math> и будем итеративно добавлять ребра следующим образом. Для каждой значительно удаленной пары {A, B} из декомпозиции к графу добавляется ребро (a, b), где a и b – произвольные точки из A и B, соответственно. Полученный граф называется WSPD-графом на S.
Декомпозицию на значительно удаленные пары разработали Кэллахан и Косарайю [6]. Построение t-остова при помощи этого подхода начинается с построения WSPD-декомпозиции S относительно коэффициента удаления s = (4(t + 1))/(t - 1). Вначале положим остовный граф равным <math>G = (S, \empty) \;</math> и будем итеративно добавлять ребра следующим образом. Для каждой значительно удаленной пары {A, B} из декомпозиции к графу добавляется ребро (a, b), где a и b – произвольные точки из A и B, соответственно. Полученный граф называется WSPD-графом на S.




4551

правка

Навигация