4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 107: | Строка 107: | ||
(4) <math>\frac{\partial ^2 \phi(x, y)}{\partial x^2} + \frac{\partial ^2 \phi(x, y)}{\partial y^2} - \epsilon \phi(x, y) = D(x, y), (x, y) \in R \frac{\partial \phi}{\partial v} = 0, (x, y)</math> на границе R, | (4) <math>\frac{\partial ^2 \phi(x, y)}{\partial x^2} + \frac{\partial ^2 \phi(x, y)}{\partial y^2} - \epsilon \phi(x, y) = D(x, y), (x, y) \in R \frac{\partial \phi}{\partial v} = 0, (x, y)</math> на границе R, | ||
где <math>\epsilon > 0 \;</math>, v – внешняя единичная нормаль, R представляет неподвижный контур, а D(x,y) – непрерывную функцию плотности. Граничные условия <math>\frac{\partial \phi}{\partial v} = 0 \;</math> диктуют, чтобы силы, направленные вовне неподвижного контура, были установлены равными нулю – этим данный подход отличается от метода Пуассона, в котором предполагается, что сила становится равной нулю на бесконечности. Значение <math>\phi_{i, j} \;</math> в центре каждого контейнера <math>B_{ij} \;</math> вычисляется посредством дискретизации уравнения (4) методом конечных разностей. Ограничения плотности заменяются требованием <math>\phi_{ij} = \hat{K} \; \forall B_{ij} \in B</math>, где <math>\hat{K} \;</math> – масштабированный представитель целевой функции плотности K. Задача минимизации длины проводов с учетом сглаженных ограничений плотности может быть решена при помощи алгоритма Узавы. В случае квадратичной функции длины провода этот алгоритм представляет собой обобщение метода распространения под действием силы. | где <math>\epsilon > 0 \;</math>, v – внешняя единичная нормаль, R представляет неподвижный контур, а D(x,y) – непрерывную функцию плотности. Граничные условия <math>\frac{\partial \phi}{\partial v} = 0 \;</math> диктуют, чтобы силы, направленные вовне неподвижного контура, были установлены равными нулю – этим данный подход отличается от метода Пуассона, в котором предполагается, что сила становится равной нулю на бесконечности. Значение <math>\phi_{i, j} \;</math> в центре каждого контейнера <math>B_{ij} \;</math> вычисляется посредством дискретизации уравнения (4) методом конечных разностей. Ограничения плотности заменяются требованием <math>\phi_{ij} = \hat{K}, \; \forall B_{ij} \in B</math>, где <math>\hat{K} \;</math> – масштабированный представитель целевой функции плотности K. Задача минимизации длины проводов с учетом сглаженных ограничений плотности может быть решена при помощи алгоритма Узавы. В случае квадратичной функции длины провода этот алгоритм представляет собой обобщение метода распространения под действием силы. | ||
Распространение на основе потенциальной функции | '''Распространение на основе потенциальной функции''' | ||
Целевые ограничения плотности могут удовлетворяться также при помощи штрафной функции. Площадь, присвоенная контейнеру | Целевые ограничения плотности могут удовлетворяться также при помощи штрафной функции. Площадь, присвоенная контейнеру <math>B_{ij} \;</math> вершиной <math>v_i \;</math>, представлена колоколообразной функцией <math>Potential(v_i, B_{ij}) \;</math>. Из-за использования кусочно-линейных квадратичных функций потенциальная функция оказывается невыпуклой, зато гладкой и дифференцируемой [6]. Штрафной член, задаваемый соотношением | ||
(5) <math>Penalty = \sum_{B_{ij} \in B} \bigg( \sum_{v_i \in V_h} Potential(v_i, B_{ij}) - K \bigg)^2 \;</math> | |||
(5) | |||
Penalty = | |||
может сочетаться с аппроксимацией длины проводов, в результате чего получаем неограниченную задачу оптимизации, которая решается при помощи эффективного метода сопряженных градиентов [6]. | может сочетаться с аппроксимацией длины проводов, в результате чего получаем неограниченную задачу оптимизации, которая решается при помощи эффективного метода сопряженных градиентов [6]. |
правка