Вершинное покрытие и деревья поиска: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 68: Строка 68:


== Открытые вопросы ==
== Открытые вопросы ==
Главный нерешенный вопрос в этом направлении исследований заключается в том, насколько далеко по нему можно зайти. Точнее говоря, насколько маленькой может быть константа c > 1, чтобы алгоритм решения задачи о вершинном покрытии имел время выполнения O(ck nO(1))? Более тщательный анализ комбинаторных структур графов позволяет надеяться на некоторое улучшение текущей наилучшей верхней границы [ ]. Несколько недавно разработанных техник [ ] также обещают улучшить значение верхней границы. С другой стороны, известно, что константа c не может быть произвольно близкой к 1, за исключением определенных, редко встречающихся в теории сложности случаев [8].
Главный нерешенный вопрос в этом направлении исследований заключается в том, насколько далеко по нему можно зайти. Точнее говоря, насколько маленькой может быть константа c > 1, чтобы алгоритм решения задачи о вершинном покрытии имел время выполнения <math>O(c^k n^{O(1)}) \;</math>? Более тщательный анализ комбинаторных структур графов позволяет надеяться на некоторое улучшение текущей наилучшей верхней границы [4]. Несколько недавно разработанных техник [6] также обещают улучшить значение верхней границы. С другой стороны, известно, что константа c не может быть произвольно близкой к 1, за исключением определенных, редко встречающихся в теории сложности случаев [8].
 


== Экспериментальные результаты ==
== Экспериментальные результаты ==
4551

правка

Навигация