Жадные алгоритмы аппроксимации: различия между версиями

Перейти к навигации Перейти к поиску
Строка 56: Строка 56:




Лемма 1. Функция f:2X!R является субмодулярной в том и только том случае, если Axf(A) < Axf(B) для любого x 2 X - B и A С B. Кроме того, f является монотонно возрастающей в том и только том случае, если Axf(A) < Axf(B) для любого x2B и ACB.
'''Лемма 1'''. Функция <math>f: 2^X \to R</math> является субмодулярной в том и только том случае, если <math>\Delta_x f(A) \le \Delta_x f(B)</math> для любого <math>x \in X - B \;</math> и <math>A \subseteq B \;</math>. Кроме того, f является монотонно возрастающей в том и только том случае, если <math>\Delta_x f(A) \le \Delta_x f(B)</math> для любого <math>x \in B \;</math> и <math>A \subseteq B \;</math>.
 
 
''Доказательство''. Если f является субмодулярной, то для <math>x \in X - B \;</math> и <math>A \subseteq B \;</math> имеет место соотношение
 
<math>f(A \cup \{ x \} )+ f(B) \ge f((A \cup \{ x \} ) \cup B) + f(A \cup \{ x \} ) \cap B) = f(B \cup \{ x \} ) + f(A)</math>,
 
иначе говоря,
 
(1) <math>\Delta_x f(A) \ge \Delta_x f(B)</math>.




Доказательство. Если f является субмодулярной, то для x 2 X — B и ACJJ имеет место
f(A[fxg)+ > f((A [ fxg) [ B) + f(A [ fxg) \ B) = f(B[fxg) + f(
это означает, что
Axf(A) > Axf(B) :
(1)
к
к
Напротив, предположим, что свойство (1) выполняется для любого x 2 B и AC B. Пусть C и D – два множества и C n D = fx1,..x k g. Тогда
Напротив, предположим, что свойство (1) выполняется для любого x 2 B и AC B. Пусть C и D – два множества и C n D = fx1,..x k g. Тогда
  U
  U
4551

правка

Навигация