Аноним

Метрическая задача коммивояжера: различия между версиями

Материал из WEGA
м
нет описания правки
Нет описания правки
мНет описания правки
 
(не показано 19 промежуточных версий этого же участника)
Строка 2: Строка 2:
[[задача коммивояжера|Задачей коммивояжера]] (Traveling Salesman Problem, TSP) является следующая [[задача оптимизации]]:
[[задача коммивояжера|Задачей коммивояжера]] (Traveling Salesman Problem, TSP) является следующая [[задача оптимизации]]:


Дано: полный неориентированный граф без циклов G = (V, E) и весовая функция w: E ! Q >o, присваивающая каждому ребру неотрицательный вес.
Дано: полный неориентированный граф без циклов G = (V, E) и весовая функция <math>w: E \to \mathbb{Q}_{ \ge 0}</math>, присваивающая каждому ребру неотрицательный вес.


Допустимые решения: все гамильтоновы обходы, т.е. подграфы H графа G, которые являются связными и каждая вершина которых имеет степень 2.
Допустимые решения: все гамильтоновы обходы, т.е. подграфы H графа G, которые являются связными и каждая вершина которых имеет степень 2.
Целевая функция: весовая функция w(H) = Pe2H w(e) обхода. Цель: минимизация значения весовой функции.


Целевая функция: весовая функция <math>w(H) = \sum_{e \in H} w(e) \;</math> обхода.


Задача коммивояжера представляет собой NP-полную задачу. Это означает, что для ее решения не существует алгоритма с полиномиальным временем выполнения, если только не окажется верным P = NP. Одним из способов разрешения этой проблемы являются алгоритмы аппроксимации. Алгоритм аппроксимации задачи TSP с полиномиальным временем выполнения называется алгоритмом a-аппроксимации, если обход H, полученный с его помощью, удовлетворяет неравенству w(H) < a ■ OPT(G). Здесь OPT(G) – вес обхода с минимальным весом для графа G. Если граф G понятен из контекста, можно записывать его просто в виде «OPT». Алгоритм a-аппроксимации всегда дает в итоге допустимое решение, целевое значение которого не более чем в a раз отличается от оптимального значения. a также называется коэффициентом аппроксимации или гарантией эффективности. a не обязательно должно быть константой; оно может быть функцией, зависящей от размера входного экземпляра или количества вершин n.
Цель: минимизация значения весовой функции.




Если существует алгоритм с полиномиальным временем выполнения для решения задачи TSP, коэффициент аппроксимации которого зависит от n, то P = NP. Таким образом, следует рассматривать ограниченные экземпляры. Наиболее естественным ограничением является неравенство треугольника, которое выглядит следующим образом:
Задача коммивояжера представляет собой NP-полную задачу. Это означает, что для ее решения не существует алгоритма с полиномиальным временем выполнения, если только не окажется верным P = NP. Одним из способов разрешения этой проблемы являются аппроксимационные алгоритмы. [[Аппроксимационный алгоритм]] задачи TSP с полиномиальным временем выполнения называется алгоритмом <math>\alpha \;</math>-аппроксимации, если обход H, полученный с его помощью, удовлетворяет неравенству <math>w(H) \le \alpha \cdot OPT(G) \;</math>. Здесь OPT(G) – вес обхода с минимальным весом для графа G. Если граф G понятен из контекста, можно записывать его просто в виде «OPT». Алгоритм <math>\alpha \;</math>-аппроксимации всегда дает в итоге допустимое решение, целевое значение которого не более чем в <math>\alpha \;</math> раз отличается от оптимального значения. Коэффициент <math>\alpha \;</math> также называется коэффициентом аппроксимации или гарантией эффективности. <math>\alpha \;</math> не обязательно должен быть константой; он может быть функцией, зависящей от размера входного экземпляра или количества вершин n.
w(u, v) < w(u, x) + w(x, v)   для всех u, v, x 2 V.




Соответствующая задача носит название метрической задачи коммивояжера (Metric TSP). Для этой задачи существуют алгоритмы аппроксимации с константным коэффициентом. Отметим, что для решения метрической задачи коммивояжера достаточно найти обход, который посещает любую вершину не менее одного раза. При наличии такого обхода мы сможем найти гамильтонов обход с меньшим или равным весом за счет пропускания любой вершины, которую мы уже посещали. Согласно неравенству треугольника, вес нового обхода не может возрастать.
Если существует алгоритм с полиномиальным временем выполнения для решения задачи TSP, коэффициент аппроксимации которого зависит от n, то P = NP [6]. Таким образом, следует рассматривать ограниченные экземпляры. Наиболее естественным ограничением является [[неравенство треугольника]], которое выглядит следующим образом:


<math>w(u, v) \le w(u, x) + w(x, v) \;</math>    для всех <math>u, v, x \in V \;</math>.


== Основные результаты ==
 
Простой 2-аппроксимацией метрической задачи коммивояжера является алгоритм удвоения дерева. Он использует минимальные остовные деревья для вычисления гамильтоновых обходов. Минимальное остовное дерево T графа G = (V, E, w) связный ациклические подграф G, содержащий все вершины E. Вес w(T) такого остовного дерева равен сумме весов его ребер, т.е. w(T) = Pe2T w(e). Остовное дерево является минимальным, если его вес минимален среди всех остовных деревьев G. Можно эффективно вычислить минимальное остовное дерево, например, при помощи алгоритмов Прима или Крускала (см., например, [5]).
Соответствующая задача носит название метрической задачи коммивояжера (Metric TSP). Для этой задачи существуют аппроксимационные алгоритмы с константным коэффициентом. Отметим, что для решения метрической задачи коммивояжера достаточно найти обход, который посещает любую вершину ''не менее'' одного раза. При наличии такого обхода мы сможем найти гамильтонов обход с меньшим или равным весом, просто пропуская любую вершину, которую мы уже посещали. Согласно неравенству треугольника, вес нового обхода не может возрастать.




Алгоритм удвоения дерева известен с давних времен. Следующая лемма доказывает верхнюю границу гарантии эффективности алгоритма удвоения дерева.
== Основные результаты ==
Простой 2-аппроксимацией метрической задачи коммивояжера является ''алгоритм удвоения дерева''. Он использует минимальные остовные деревья для вычисления гамильтоновых обходов. [[Остовное дерево]] T графа G = (V, E, w) представляет собой связный ациклический подграф G, содержащий все вершины V. Вес w(T) такого остовного дерева равен сумме весов его ребер, т.е. <math>w(T) = \sum_{e \in T} w(e) \;</math>. Остовное дерево является минимальным, если его вес минимален среди всех остовных деревьев G. Можно эффективно вычислить минимальное остовное дерево, например, при помощи алгоритмов Прима или Крускала (см., к примеру, [5]).




Дано: полный неориентированный граф без циклов G = (V, E, w) с взвешенными ребрами и весовая функция w: E ! Q>o, удовлетворяющая неравенству треугольника.
Алгоритм удвоения дерева известен с давних времен. Следующая лемма необходима для доказательства верхней границы гарантии эффективности алгоритма удвоения дерева.


Требуется: найти гамильтонов обход для G, являющийся 2”-аппроксимацией.


1: Вычислить минимальное остовное дерево T графа G.
  Дано: полный неориентированный граф без циклов G = (V, E, w) с взвешенными ребрами и весовой функцей <math>w: E \to \mathbb{Q}_{ \ge 0}</math>, удовлетворяющей неравенству треугольника.
2: Продублировать каждое ребро T и получить эйлеров мультиграф T’.
 
3: Вычислить эйлеров обход для T (например, при помощи поиска в глубину по T). При посещении вершины эйлерова обхода, которая ранее уже была посещена, эта вершина пропускается, и мы переходим к следующей непосещенной вершине эйлерова обхода. (Этот процесс называется сокращением обхода.) Вернуть полученный гамильтонов обхода H.
  Требуется: найти гамильтонов обход для G, являющийся 2-аппроксимацией.
 
  1: Вычислить минимальное остовное дерево T графа G.
  2: Продублировать каждое ребро T и получить эйлеров мультиграф T’.
  3: Вычислить эйлеров обход для T' (например, при помощи поиска в глубину по T). При посещении вершины эйлерова обхода, которая ранее уже была посещена, пропускаем эту вершину
      и переходим к следующей непосещенной вершине эйлерова обхода. (Этот процесс называется ''сокращением обхода'').
      Вернуть полученный гамильтонов обход H.


Алгоритм 1. Алгоритм удвоения дерева
Алгоритм 1. Алгоритм удвоения дерева




Лемма 1. Пусть T – минимальное остовное дерево G = (V, E, w). Тогда w(T) < OPT.
'''Лемма 1. Пусть T – минимальное остовное дерево G = (V, E, w). Тогда <math>w(T) \le OPT \;</math>.'''


Доказательство. Если удалить любое ребро гамильтонова обхода G, получим остовное дерево G.
Доказательство. Если удалить любое ребро гамильтонова обхода G, получим остовное дерево G.   <math>\Box</math>




Теорема 2. Алгоритм 1 всегда возвращает гамильтонов обход, вес которого не более чем вдвое превышает вес оптимального обхода. Он имеет полиномиальное время выполнения.
'''Теорема 2. Алгоритм 1 всегда возвращает гамильтонов обход, вес которого не более чем вдвое превышает вес оптимального обхода. Он имеет полиномиальное время выполнения.'''


Доказательство. Согласно лемме 1, w(T) < OPT. Поскольку мы удваиваем каждое ребро T, вес T’ составляет w(T0) = 2w(T) < 2OPT. В результате сокращения обхода на шаге 3 путь в T’ заменяется одним ребром. Согласно неравенству треугольника, сумма весов ребер на таком пути не меньше веса ребра, которым он заменяется. (Для произвольных весовых функций данный алгоритм оказывается недействительным). Следовательно, w(T) < OPT. Это доказывает утверждение по поводу эффективности аппроксимации.
Доказательство. Согласно лемме 1, <math>w(T) \le OPT \;</math>. Поскольку мы удваиваем каждое ребро T, вес T' составляет <math>w(T') = 2w(T) \le 2 OPT \;</math>. В результате сокращения обхода на шаге 3 путь в T' заменяется одним ребром. Согласно неравенству треугольника, сумма весов ребер на таком пути не меньше веса ребра, которым он заменяется. (Для произвольных весовых функций данный алгоритм оказывается недействительным). Следовательно, <math>w(H) \le w(T') \;</math>. Это доказывает утверждение по поводу эффективности аппроксимации.


Время выполнения определяется главным образом временем вычисления минимального остовного дерева – которое, очевидно, является полиномиальным.
Время выполнения определяется главным образом временем вычисления минимального остовного дерева – которое, очевидно, является полиномиальным. <math>\Box</math>




Алгоритм Кристофидеса (алгоритм 2) представляет собой продуманное уточнение алгоритма удвоения дерева. Вначале он вычисляет минимальное остовное дерево. Затем для всех вершин, имеющих нечетную степень в T, он вычисляет совершенное паросочетание с минимальным весом. Паросочетание M для графа G называется паросочетанием на U С V, если все ребра M состоят из двух вершин подмножества U. Такое паросочетание называется совершенным, если каждая вершина из U инцидентна ребру из M.
Алгоритм Кристофидеса (алгоритм 2) представляет собой продуманное уточнение алгоритма удвоения дерева. Вначале он вычисляет минимальное остовное дерево. Затем для всех вершин, имеющих нечетную степень в T, он вычисляет совершенное паросочетание с минимальным весом. [[Паросочетание]] M для графа G называется паросочетанием на <math>U \subseteq V \;</math>, если все ребра M состоят из двух вершин подмножества U. Такое паросочетание называется [[совершенное паросочетание|совершенным]], если каждая вершина из U инцидентна ребру из M.




Дано: полный неориентированный граф без циклов G = (V, E, w) с весовой функцией w: E ! Q>o, удовлетворяющей неравенству треугольника.
  Дано: полный неориентированный граф без циклов G = (V, E, w) с взвешенными ребрами и весовой функцей <math>w: E \to \mathbb{Q}_{ \ge 0}</math>, удовлетворяющей неравенству треугольника.
 
 
Требуется: найти гамильтонов обход для G, являющийся 3/2”-аппроксимацией.
  Требуется: найти гамильтонов обход для G, являющийся 3/2-аппроксимацией.
 
 
1: Вычислить минимальное остовное дерево T графа G.
  1: Вычислить минимальное остовное дерево T графа G.
2: Пусть U С V – множество всех вершин, имеющих нечетную степень в T. Для графа G вычислить совершенное паросочетание с минимальным весом M на U.
  2: Пусть <math>U \subseteq V \;</math> – множество всех вершин, имеющих нечетную степень в T. Для графа G вычислить совершенное паросочетание с минимальным весом M на U.
3: Вычислить эйлеров обход для T [ M (рассматриваемый как мультиграф).
  3: Вычислить эйлеров обход для <math>T \cup M \;</math> (рассматриваемый как мультиграф).
4: Выполнить сокращение путей этого эйлерова обхода до гамильтонова обхода H.
  4: Выполнить сокращение путей этого эйлерова обхода до гамильтонова обхода H.


Алгоритм 2. Алгоритм Кристофидеса
Алгоритм 2. Алгоритм Кристофидеса
Строка 65: Строка 70:




Лемма 3. Пусть U С V;#U нечетно. Пусть M – совершенное паросочетание с минимальным весом на U. Тогда w(M) < OPT/2.
'''Лемма 3. Пусть <math>U \subseteq V \;</math>, #U четно. Пусть M – совершенное паросочетание с минимальным весом на U. Тогда <math>w(M) \le OPT/2 \;</math>.'''


Доказательство. Пусть H – оптимальный гамильтонов обход на G. Выполняем сокращение в H, получая обход H0 на G|U следующим образом: H порождает перестановку вершин в U, представляющую собой порядок, в котором они посещаются по ходу H. Соединим вершины U в порядке, заданном перестановкой. Каждому ребру в H0 соответствует путь в H, соединяющий две вершины этого ребра. Согласно неравенству треугольника, w(H0) < w(H). Поскольку #U является четным, H0 представляет собой объединение двух паросочетаний. Вес более легкого из них не превышает w(H0)/2 < OPT/2.
Доказательство. Пусть H – оптимальный гамильтонов обход на G. Выполняем сокращения в H, получая обход H' на <math>G|_U \;</math> следующим образом: H порождает перестановку вершин в U, представляющую собой порядок, в котором они посещаются по ходу H. Соединим вершины U в порядке, заданном перестановкой. Каждому ребру в H' соответствует путь в H, соединяющий две вершины этого ребра. Согласно неравенству треугольника, <math>w(H') \le w(H) \;</math>. Поскольку #U является четным, H' представляет собой объединение двух паросочетаний. Вес более легкого из них не превышает <math>w(H')/2 \le OPT/2 \;</math>. <math>\Box</math>




Можно вычислить совершенное паросочетание с минимальным весом за время O(n3); см., например, [5].
Можно вычислить совершенное паросочетание с минимальным весом за время <math>O(n^3) \;</math>; см., например, [5].




Теорема 4. Алгоритм 2 представляет собой алгоритм 3/2-аппроксимации с полиномиальным временем выполнения.
'''Теорема 4. Алгоритм 2 представляет собой алгоритм 3/2-аппроксимации с полиномиальным временем выполнения.'''


Доказательство. Вначале отметим, что количество вершин с нечетной степенью в остовном дереве является четным, поскольку сумма степеней всех вершин равна 2(n 1), а это четное число. Таким образом, совершенное паросочетание на U существует. Вес эйлерова обхода, очевидно, составляет w(T) + w(M). Согласно лемме 1, w(T) < OPT. Согласно лемме 3, w(M) < OPT/2. Вес w(H) вычисленного обхода H не превышает веса эйлерова обхода согласно неравенству треугольника, т.е. w(H) < |OPT. Таким образом, полученный алгоритм представляет собой алгоритм 3/2-аппроксимации, время выполнения которого составляет O(n3).
Доказательство. Вначале отметим, что количество вершин с нечетной степенью в остовном дереве является четным, поскольку сумма степеней всех вершин равна 2(n - 1), а это четное число. Таким образом, совершенное паросочетание на U существует. Вес эйлерова обхода, очевидно, составляет w(T) + w(M). Согласно лемме 1, <math>w(T) \le OPT \;</math>. Согласно лемме 3, <math>w(M) \le OPT/2 \;</math>. Вес w(H) вычисленного обхода H не превышает веса эйлерова обхода согласно неравенству треугольника, т.е. <math>w(H) \le \frac{3}{2} OPT \;</math>. Таким образом, полученный алгоритм представляет собой алгоритм 3/2-аппроксимации, а его время выполнения составляет <math>O(n^3) \;</math>. <math>\Box</math>




== Применение ==
== Применение ==
Экспериментальный анализ показывает, что алгоритм Кристофидеса сам отклоняется от оптимального обхода на величину от 10 до 15% [ ]. Однако он может служить хорошей отправной точкой для других эвристик обхода – таких как эвристика Лина-Кернигана.
Экспериментальный анализ показывает, что алгоритм Кристофидеса сам отклоняется от оптимального обхода на величину от 10 до 15% [3]. Однако он может служить хорошей отправной точкой для других эвристик обхода – таких как эвристика Лина-Кернигана.




Рисунок 1. Пример для алгоритма Кристофидеса. В графе 2n + 1 вершин. Сплошные ребра имеют вес 1, пунктирные – вес 1 + e.
[[Файл:M_TSP.png]]
 
Рисунок 1. Пример для алгоритма Кристофидеса. В графе 2n + 1 вершин. Сплошные ребра имеют вес 1, пунктирные – вес <math>1 + \epsilon \;</math>.




== Открытые вопросы ==
== Открытые вопросы ==
Анализ алгоритма 2 несложен. Примером может служить метрическое пополнение графа, изображенного на рис. 1. Его единственное минимальное остовное дерево состоит из всех склошных ребер. Оно содержит только две вершины с нечетными степенями. Ребро между этими двумя вершинами имеет вес (1 + е)(и + 1). Сокращений не требуется; вес обхода, вычисленного алгоритмом, равен £rf n. Оптимальный обход состоит из всех пунктирных ребер, а также самого левого и самого правого сплошных ребер. Вес этого обхода составляет (2n - 1)(1 + e) + 2 & 2n.
Анализ алгоритма 2 несложен. Примером может служить метрическое пополнение графа, изображенного на рис. 1. Его единственное минимальное остовное дерево состоит из всех сплошных ребер. Оно содержит только две вершины с нечетными степенями. Ребро между этими двумя вершинами имеет вес <math>(1 + \epsilon)(n + 1) \;</math>. Сокращения путей не требуется; вес обхода, вычисленного алгоритмом, равен <math>\approx 3 n \;</math>. Оптимальный обход состоит из всех пунктирных ребер, а также самого левого и самого правого сплошных ребер. Вес этого обхода составляет <math>(2n - 1)(1 + \epsilon) + 2 \approx 2n \;</math>.


Вопрос о существовании алгоритма аппроксимации с лучшей гарантией эффективности является главным нерешенным вопросом а теории алгоритмов аппроксимации.
Вопрос о существовании аппроксимационного алгоритма с лучшей гарантией эффективности является главным нерешенным вопросом в теории аппроксимационных алгоритмов.




Хельд и Карп [ ] разработали алгоритм на основе линейного программирования, вычисляющий нижнюю границу веса оптимального обхода для задачи коммивояжера. Была предложена гипотеза, что вес оптимального обхода для задачи коммивояжера не более чем в 4/3 раза превышает его нижнюю границу; однако эта гипотеза уже более 30 лет остается недоказанной. Алгоритмическое доказательство гипотезы позволило бы получить алгоритм 4/3-аппроксимации для метрической задачи коммивояжера.
Хельд и Карп [2] разработали алгоритм на основе линейного программирования, вычисляющий нижнюю границу веса оптимального обхода для задачи коммивояжера. Была предложена гипотеза, что вес оптимального обхода для задачи коммивояжера не более чем в 4/3 раза превышает его нижнюю границу; однако эта гипотеза уже более 30 лет остается недоказанной. Алгоритмическое доказательство гипотезы позволило бы получить алгоритм 4/3-аппроксимации для метрической задачи коммивояжера.




== Экспериментальные результаты ==
== Экспериментальные результаты ==
В работе [3] было отмечено отклонение в 10-15% от оптимального (говоря точнее – от границы Хельда-Карпа) на различных экземплярах задачи.
В работе [3] было отмечено отклонение в 10-15% от оптимального (точнее говоря, от границы Хельда-Карпа) на различных экземплярах задачи.




== Наборы данных ==
== Наборы данных ==
На странице 8-го тура задач по реализации DIMACS по адресу www.research.att.com/~dsj/chtsp/ можно найти множество экземпляров.
На странице 8-го тура задач по реализации DIMACS по адресу http://www.research.att.com/~dsj/chtsp/ можно найти множество экземпляров.




Строка 108: Строка 115:
== Литература ==
== Литература ==


Кристофидес не публиковал самостоятельно свой алгоритм. Он обычно цитируется как один из двух технических отчетов Университета Карнеги-Меллона – TR 388 Института индустриальных исследований (теперь он называется Школой бизнеса Теппера) и CS-93-13. Ни один из них в настоящее время не доступен в Университете Карнеги-Меллона [из личной переписки с Фрэнком Бальбахом Balbach, 2006 г.]. В материалах конференции были приведены тезисы объемом в 1 страницу. Однако алгоритм быстро проложил себе дорогу в учебники по теории алгоритмов; см., например, [7].
Кристофидес не публиковал самостоятельно свой алгоритм. Он обычно цитируется по одному из двух технических отчетов Университета Карнеги-Меллона – TR 388 Института индустриальных исследований (теперь он называется Школой бизнеса Теппера) и CS-93-13. Ни один из них в настоящее время не доступен в Университете Карнеги-Меллона [из личной переписки с Фрэнком Бальбахом Balbach, 2006 г.]. В материалах конференции были приведены тезисы объемом в 1 страницу. Однако алгоритм быстро проложил себе дорогу в учебники по теории алгоритмов; см., например, [7].
 


1. Christofides, N.: Worst case analysis of a new heuristic for the traveling salesman problem, Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, (1976). Also: Carnegie-Mellon University Technical Report CS-93-13, 1976. Abstract in Traub, J.F. (ed.) Symposium on new directions and recent results in algorithms and complexity, pp. 441. Academic Press, New York (1976)
1. Christofides, N.: Worst case analysis of a new heuristic for the traveling salesman problem, Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, (1976). Also: Carnegie-Mellon University Technical Report CS-93-13, 1976. Abstract in Traub, J.F. (ed.) Symposium on new directions and recent results in algorithms and complexity, pp. 441. Academic Press, New York (1976)
4430

правок