Аноним

Метрическая задача коммивояжера: различия между версиями

Материал из WEGA
м
Строка 22: Строка 22:


== Основные результаты ==
== Основные результаты ==
Простой 2-аппроксимацией метрической задачи коммивояжера является алгоритм удвоения дерева. Он использует минимальные остовные деревья для вычисления гамильтоновых обходов. Минимальное остовное дерево T графа G = (V, E, w) связный ациклические подграф G, содержащий все вершины E. Вес w(T) такого остовного дерева равен сумме весов его ребер, т.е. w(T) = Pe2T w(e). Остовное дерево является минимальным, если его вес минимален среди всех остовных деревьев G. Можно эффективно вычислить минимальное остовное дерево, например, при помощи алгоритмов Прима или Крускала (см., например, [5]).
Простой 2-аппроксимацией метрической задачи коммивояжера является алгоритм удвоения дерева. Он использует минимальные остовные деревья для вычисления гамильтоновых обходов. [[Остовное дерево]] T графа G = (V, E, w) представляет собой связный ациклический подграф G, содержащий все вершины E. Вес w(T) такого остовного дерева равен сумме весов его ребер, т.е. w(T) = Pe2T w(e). Остовное дерево является минимальным, если его вес минимален среди всех остовных деревьев G. Можно эффективно вычислить минимальное остовное дерево, например, при помощи алгоритмов Прима или Крускала (см., например, [5]).




Строка 78: Строка 78:


Доказательство. Вначале отметим, что количество вершин с нечетной степенью в остовном дереве является четным, поскольку сумма степеней всех вершин равна 2(n — 1), а это четное число. Таким образом, совершенное паросочетание на U существует. Вес эйлерова обхода, очевидно, составляет w(T) + w(M). Согласно лемме 1, w(T) < OPT. Согласно лемме 3, w(M) < OPT/2. Вес w(H) вычисленного обхода H не превышает веса эйлерова обхода согласно неравенству треугольника, т.е. w(H) < |OPT. Таким образом, полученный алгоритм представляет собой алгоритм 3/2-аппроксимации, время выполнения которого составляет O(n3). □
Доказательство. Вначале отметим, что количество вершин с нечетной степенью в остовном дереве является четным, поскольку сумма степеней всех вершин равна 2(n — 1), а это четное число. Таким образом, совершенное паросочетание на U существует. Вес эйлерова обхода, очевидно, составляет w(T) + w(M). Согласно лемме 1, w(T) < OPT. Согласно лемме 3, w(M) < OPT/2. Вес w(H) вычисленного обхода H не превышает веса эйлерова обхода согласно неравенству треугольника, т.е. w(H) < |OPT. Таким образом, полученный алгоритм представляет собой алгоритм 3/2-аппроксимации, время выполнения которого составляет O(n3). □


== Применение ==
== Применение ==
4430

правок