Задача о трехмерном сочетании

Материал из WEGA
Версия от 16:05, 11 февраля 2011; KEV (обсуждение | вклад)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)

Задача о трехмерном сочетании (3-Combination problem) — одна из основных [math]\displaystyle{ \mathcal NP }[/math]-полных задач. Формулируется следующим образом.

Верно ли, что заданное множество [math]\displaystyle{ M\subseteq W\times X\times Y }[/math], где [math]\displaystyle{ W,\,X }[/math] и [math]\displaystyle{ \,Y }[/math] — непересекающиеся множества, равной мощности [math]\displaystyle{ \,q }[/math], т.е. [math]\displaystyle{ \mid W \mid = \mid X \mid = \mid Y \mid = q }[/math], содержит трехмерное сочетание, т.е. такое подмножество [math]\displaystyle{ M'\subseteq M }[/math], что [math]\displaystyle{ \mid M'\mid =q }[/math] и никакие два разных элемента из [math]\displaystyle{ M^\prime }[/math] не имеют ни одной равной координаты?

См. также

Литература

  • Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. — М.: Мир, 1979.
  • Касьянов В.Н. Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995.