Евклидова задача коммивояжера

Материал из WEGA
Версия от 13:59, 22 января 2014; Irina (обсуждение | вклад) (Новая страница: «== Ключевые слова и синонимы == Геометрическая задача коммивояжера == Постановка задачи ==…»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)

Ключевые слова и синонимы

Геометрическая задача коммивояжера


Постановка задачи

Рассматриваются NP-полные задачи геометрической оптимизации – такие как евклидова задача коммивояжера и евклидова задача нахождения дерева Штейнера. Эти задачи являются геометрическими вариантами стандартных задач оптимизации графа, ограничение входных экземпляров геометрическим или евклидовым случаем встречается во множестве приложений ([1, 2]). Далее будет в основном рассматриваться евклидова задача коммивояжера.


Нотация

Евклидова задача коммивояжера заключается в следующем: для заданного множества S из n точек в евклидовом пространстве Rd найти путь минимальной длины, проходящий через каждую точку ровно один раз.

Стоимость 8(x, y) дуги, соединяющей пару точек x;y2Rd, равна евклидовому расстоянию между точками x и y. Иначе говоря, S(x, y) = P di=1(xi ~~ i)2, где x = (x 1 ; :. , xd) и y = (y 1,.: ; y d). В более общем виде расстояние можно определить с использованием других норм – таких как lp-нормы для любого p > l,8(x,y) = Pid=1(xi ~ yi)p . Для заданного множества S точек в евклидовом пространстве Rd, для целого d > 2, евклидов граф (сеть) представляет собой граф G = (S; E), где E – множество прямолинейных сегментов, соединяющих пары точек из S. Если все пары точек в S соединены дугами из E, то G называется полным евклидовым графом на S. Стоимость графа равна сумме стоимостей дуг графа:

Схема аппроксимации с полиномиальным временем исполнения (PTAS) представляет собой семейство алгоритмов fA" g, такое, что для каждого фиксированного " > 0 алгоритм A" исполняется за время, полиномиальное относительно размера входного графа, и дает (1 + ")-аппроксимацию.


Родственные работы

Классическая работа Лоулера и коллег [12] содержит полную информацию о TSP. Обзор Берна и Эппстайна [7] представляет состояние дел в исследованиях геометрических TSP вплоть до 1995; Арора в своем обзоре [2] рассматривает работы, выполненные после 1995 года.


Основные результаты

Известно, что в графах общего вида задача коммивояжера является NP-полной; то же верно для евклидовой задачи коммивояжера [11], [14].


Теорема 1. Евклидова задача коммивояжера является NP-полной.

Как ни удивительно, до сих пор неизвестно, является ли «decision»-версия этой задачи NP-полной [11] («decision»-версия евклидовой задачи коммивояжера заключается в поиске ответа на вопрос, существует ли для заданных евклидового пространства Rd и числа t простой путь с длиной, меньшей t, проходящий через каждую точку ровно один раз).

Аппроксимируемость TSP в последние десятилетия активно изучалась. Нетрудно увидеть, что эта задача TSP неаппроксимируема за полиномиальное время (если только не окажется верным P = NP) для произвольных графов с произвольной стоимостью дуг. Если веса удовлетворяют неравенству треугольника (этот случай обозначается как «метрическая задача коммивояжера»), существует алгоритм 3/2-аппроксимации с полиномиальным временем исполнения, разработанный Кристофидесом [8]; также известно, что PTAS для этого случая не существует (если только не верно P = NP). Тревизан [17] усилил этот результат, включив евклидовы графы более высоких измерений (тот же результат имеет место для любой lp-метрики).


Теорема 2 (Тревизан [17]). Если d > log n, то существует константа e > 0, такая, что евклидова задача коммивояжера на R является NP-полной с аппроксимацией с коэффициентом 1 + e. В частности, из этого результата следует, что если d > log n, то евклидова задача коммивояжера на Rd не имеет PTAS, за исключением случая, когда


Тот же результат имеет место для любой lp-метрики. Кроме того, из теоремы 2 следует, что евклидова задача коммивояжера на Rlog n является APX PB-полной при ограничении по E и APX-полной при ограничении по AP.

Считалось, что теорема 2 может выполняться для небольших значений d, в частности, для d = 2, однако это было незвисимым образом опровергнуто Аророй [1] и Митчеллом [13].

Теорема 3 (Arora [1], Mitchell [13]). Евклидова задача коммивояжера на плоскости имеет PTAS.

Основная идея алгоритмов Ароры и Митчелла достаточно проста, но детали анализа оказываются очень сложными. Оба алгоритма используют один и тот же подход. Во-первых, необходимо доказать так называемую «структурную теорему». Она демонстрирует, что существует (1 + e)-аппроксимация с некоторыми локальными свойствами. В случае евклидовой задачи коммивояжера существует разбиение пространства припомощи кваддерева, содержащее все точки, такие, что каждая ячейка кваддерева пересекается во время пути не более чем константное число раз и только в некоторых заранее определенных местоположениях. После доказательства структурной теоремы необходимо использовать динамическое программирование для нахождения оптимального (или близкого к оптимальному) решения, которое подчиняется локальным свойствам, обозначенным в структурной теореме.

Исходные алгоритмы, представленные в первой версии [1], представленной на конференции, и в раннем варианте [13], имели время исполнения в форме 0{nll€), что позволяло получить (1 + e)-аппроксимацию; впоследствии оно было улучшено. В частности, рандомизированный алгоритм Ароры [1] исполняется за время O(n(log и)1/е); он может быть дерандомизирован, в силу чего время увеличится на O(n). Результат теоремы 3 также может быть распространен на более высокие измерения. Арора демонстрирует следующий результат.

Теорема 4 (Арора [1]). Для каждого константного значения d евклидова задача коммивояжера на Rd имеет PTAS.

Для каждого фиксированного значения c > 1 и любых n вершин из Rd существует рандомизированный алгоритм, который находит (1 + 1/c)-аппроксимацию для оптимального пути коммивояжера за время O(n (log n)^°^dc^ ). В частности, для любых константных значений d и c время исполнения составляет O(n (log n)O(1)). Алгоритм может быть дерандомизирован, что увеличит время исполнения на коэффициент O(nd).

Рао и Смит [15] впоследствии расширили эту теорему, предложив следующую. Теорема 5 (Рао и Смит [15]). Существует детерминированный алгоритм, вычисляющий (1 + 1/c)-аппроксимацию

^
п +

оптимальной траектории движения коммивояжера за время n log n).

Существует рандомизированный алгоритм Монте-Карло, который достигает успеха с вероятностью не менее 1/2, вычисляя (1 + 1/c)-аппроксимацию для оптимального пути коммивояжера за ожидаемое время {c\fd)°^c^d:) ) n + O(d n log n).

Для отдельного, наиболее интересного случая, при d = 2, Рао и Смит продемонстрировали следующий результат.

Теорема 6 (Рао и Смит [15]). Существует рандомизированный алгоритм, который вычисляет (1 + 1/c)-аппроксимацию для оптимального пути коммивояжера за время O(n 2cO(1) + cO(1) n log n).

Существует рандомизированный алгоритм Монте-Карло, который не достигает успеха с вероятностью менее 1/2, вычисляя (1 + 1/c)-аппроксимацию для оптимального пути коммивояжера за ожидаемое время O(n 2cO(1) + n log n).


Применение

Техники, разработанные Аророй [1] и Митчеллом [13], нашли множество вариантов применения в разработке схем аппроксимации с полиномиальным временем исполнения для задач геометрической оптимизации.

Евклидова задача нахождения минимального дерева Штейнера

Для заданного множества S из n точек в евклидовом пространстве Rd найти путь минимальной стоимости, соединающий все точки S (стоимость сети равна сумме длин дуг, ее определяющих).

Теорема 7 ([1, 15]). Для каждого константного значения d евклидова задача нахождения минимального дерева Штейнера на Rd имеет PTAS.

Евклидова задача нахождения k медиан

Для заданного множества S из n точек в евклидовом пространстве Rd и целого числа k найти k медиан между точками S, таких, что сумма расстояний от каждой точки S до ближайшей к ней медианы минимальна.

Теорема 8 ([5]). Для каждого константного значения d евклидова задача нахождения k медиан на Rd имеет PTAS.

Евклидова задача коммивояжера с k точками

Для заданного множества S из n точек в евклидовом пространстве Rd и целого числа k найти путь минимальной длины, проходящий не менее k точек множества S.

Евклидова задача нахождения минимального дерева Штейнера с k точками

Для заданного множества S из n точек в евклидовом пространстве Rd и целого числа k найти кратчайшее дерево, содержащее не менее k точек множества S.

Теорема 9 ([1]). Для каждого константного значения d евклидовы задачи коммивояжера с k точками и нахождения минимального дерева Штейнера с k точками на Rd имеют PTAS.

Евклидова задача нахождения k-связного подграфа минимальной стоимости

Для заданного множества S из n точек в евклидовом пространстве Rd и целого числа k найти подграф полного графа S минимальной стоимости, являющийся k-связным.

Теорема 10 ([9]). Для каждого константного значения d и константного k, евклидова задача нахождения k-связного подграфа минимальной стоимости на Rd имеет PTAS.

Техники, разработанные Аророй [1] и Митчеллом [13], также привели к созданию квазиполиномиальных схем аппроксимации – то есть алгоритмов с временем исполнения n°^°&n\. К примеру, Арора и Карокостас [4] создали схему аппроксимации с квазиполиномиальным временем исполнения для решения евклидовой задачи нахождения минимального времени ожидания; Реми и Стегер [16] предложили схему аппроксимации с полиномиальным временем исполнения для решения задачи триангуляции с минимальным весом. Более подробные обзоры можно найти в [2] и [10].


Расширение на планарные графы

Подход динамического программирования, используемый Арором и Митчеллом, также имеет отношение к недавним достижениям в области нескольких проблем оптимизации для планарных графов. В частности, Аврор и коллеги [3] разработали PTAS для задачи коммивояжера на взвешенных планарных графах; существует также PTAS для задачи нахождения двусвязного остовного подграфа планарного графа, имеющего минимальную стоимость [6].


Открытые вопросы

Остается неясным интересный вопрос: могут ли упомятуные выше квазиполиномиальные схемы аппроксимации (для нахождения минимального времени ожидания и триангуляции с минимальным весом) быть расширены для получения схем аппроксимации с полиномиальным временем исполнения. Другие открытые вопросы можно найти в [2].


См. также


Литература

1. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753-782 (1998)

2. Arora, S.: Approximation schemes for NP-hard geometric optimization problems: A survey. Math. Program. Ser. B 97,43-69 (2003)

3. Arora, S., Grigni, M., Karger, D., Klein, P., Woloszyn, A..: A polynomial time approximation scheme for weighted planar graph TSP. In: Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998, pp. 33-41

4. Arora, S., Karakostas, G.: Approximation schemes for minimum latency problems. In: Proc. 31st Annual ACM Symposium on Theory of Computing, 1999, pp. 688-693

5. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean k-medians and related problems. In: Proc. 30th Annual ACM Symposium on Theory of Computing, 1998, pp. 106-113

6. Berger, A., Czumaj, A., Grigni, M., Zhao, H.: Approximation schemes for minimum 2-connected spanning subgraphs in weighted planar graphs. In: Proc. 13th Annual European Symposium on Algorithms, 2005, pp. 472-483

7. Bern, M., Eppstein, D.: Approximation algorithms for geometric problems. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-hard problems. PWS Publishing, Boston (1996)

8. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. In: Technical report, Graduate School of Industrial Administration. Carnegie-Mellon University, Pittsburgh (1976)

9. Czumaj, A., Lingas, A.: On approximability of the minimum-cost k-connected spanning subgraph problem. In: Proc. 10th Annual ACM-SIAM Symposium on Discrete Algorithms, 1999, pp. 281-290

10. Czumaj, A., Lingas, A.: Approximation schemes for minimum-cost k-connectivity problems in geometric graphs. In: Gonzalez, T.F. (eds.) Handbook of Approximation Algorithms and Metaheuristics. CRC Press, Boca Raton (2007)

11. Garey, M.R., Graham, R.L., Johnson, D.S.: Some NP-complete geometric problems. In: Proc. 8th Annual ACM Symposium on Theory of Computing, 1976, pp. 10-22

12. Lawler, E.L., Lenstra,J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.:The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester (1985)

13. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput. 28(4), 1298-1309 (1999)

14. Papadimitriou, C.H.: Euclidean TSP is NP-complete. Theor. Comput. Sci. 4, 237-244 (1977)

15. Rao, S.B., Smith, W.D.: Approximating geometrical graphs via "spanners" and "banyans". In: Proc. 30th Annual ACM Symposium on Theory of Computing, 1998, pp. 540-550

16. Remy, J., Steger, A.: A quasi-polynomial time approximation scheme for minimum weight triangulation. In: Proc. 38th Annual ACM Symposium on Theory of Computing, 2006

17. Trevisan, L.: When Hamming meets Euclid: the approximability of geometric TSP and SteinerTree. SIAM J. Comput. 30(2), 475-485 (2000)