Аноним

Метрическая задача коммивояжера: различия между версиями

Материал из WEGA
м
нет описания правки
мНет описания правки
мНет описания правки
Строка 11: Строка 11:




Задача коммивояжера представляет собой NP-полную задачу. Это означает, что для ее решения не существует алгоритма с полиномиальным временем выполнения, если только не окажется верным P = NP. Одним из способов разрешения этой проблемы являются алгоритмы аппроксимации. [[Алгоритм аппроксимации]] задачи TSP с полиномиальным временем выполнения называется алгоритмом <math>\alpha \;</math>-аппроксимации, если обход H, полученный с его помощью, удовлетворяет неравенству <math>w(H) \le \alpha \cdot OPT(G) \;</math>. Здесь OPT(G) – вес обхода с минимальным весом для графа G. Если граф G понятен из контекста, можно записывать его просто в виде «OPT». Алгоритм <math>\alpha \;</math>-аппроксимации всегда дает в итоге допустимое решение, целевое значение которого не более чем в <math>\alpha \;</math> раз отличается от оптимального значения. Коэффициент <math>\alpha \;</math> также называется коэффициентом аппроксимации или гарантией эффективности. <math>\alpha \;</math> не обязательно должен быть константой; он может быть функцией, зависящей от размера входного экземпляра или количества вершин n.
Задача коммивояжера представляет собой NP-полную задачу. Это означает, что для ее решения не существует алгоритма с полиномиальным временем выполнения, если только не окажется верным P = NP. Одним из способов разрешения этой проблемы являются аппроксимационные алгоритмы. [[Аппроксимационный алгоритм]] задачи TSP с полиномиальным временем выполнения называется алгоритмом <math>\alpha \;</math>-аппроксимации, если обход H, полученный с его помощью, удовлетворяет неравенству <math>w(H) \le \alpha \cdot OPT(G) \;</math>. Здесь OPT(G) – вес обхода с минимальным весом для графа G. Если граф G понятен из контекста, можно записывать его просто в виде «OPT». Алгоритм <math>\alpha \;</math>-аппроксимации всегда дает в итоге допустимое решение, целевое значение которого не более чем в <math>\alpha \;</math> раз отличается от оптимального значения. Коэффициент <math>\alpha \;</math> также называется коэффициентом аппроксимации или гарантией эффективности. <math>\alpha \;</math> не обязательно должен быть константой; он может быть функцией, зависящей от размера входного экземпляра или количества вершин n.




Строка 19: Строка 19:




Соответствующая задача носит название метрической задачи коммивояжера (Metric TSP). Для этой задачи существуют алгоритмы аппроксимации с константным коэффициентом. Отметим, что для решения метрической задачи коммивояжера достаточно найти обход, который посещает любую вершину ''не менее'' одного раза. При наличии такого обхода мы сможем найти гамильтонов обход с меньшим или равным весом, просто пропуская любую вершину, которую мы уже посещали. Согласно неравенству треугольника, вес нового обхода не может возрастать.
Соответствующая задача носит название метрической задачи коммивояжера (Metric TSP). Для этой задачи существуют аппроксимационные алгоритмы с константным коэффициентом. Отметим, что для решения метрической задачи коммивояжера достаточно найти обход, который посещает любую вершину ''не менее'' одного раза. При наличии такого обхода мы сможем найти гамильтонов обход с меньшим или равным весом, просто пропуская любую вершину, которую мы уже посещали. Согласно неравенству треугольника, вес нового обхода не может возрастать.




Строка 95: Строка 95:
Анализ алгоритма 2 несложен. Примером может служить метрическое пополнение графа, изображенного на рис. 1. Его единственное минимальное остовное дерево состоит из всех сплошных ребер. Оно содержит только две вершины с нечетными степенями. Ребро между этими двумя вершинами имеет вес <math>(1 + \epsilon)(n + 1) \;</math>. Сокращения путей не требуется; вес обхода, вычисленного алгоритмом, равен <math>\approx 3 n \;</math>. Оптимальный обход состоит из всех пунктирных ребер, а также самого левого и самого правого сплошных ребер. Вес этого обхода составляет <math>(2n - 1)(1 + \epsilon) + 2 \approx 2n \;</math>.
Анализ алгоритма 2 несложен. Примером может служить метрическое пополнение графа, изображенного на рис. 1. Его единственное минимальное остовное дерево состоит из всех сплошных ребер. Оно содержит только две вершины с нечетными степенями. Ребро между этими двумя вершинами имеет вес <math>(1 + \epsilon)(n + 1) \;</math>. Сокращения путей не требуется; вес обхода, вычисленного алгоритмом, равен <math>\approx 3 n \;</math>. Оптимальный обход состоит из всех пунктирных ребер, а также самого левого и самого правого сплошных ребер. Вес этого обхода составляет <math>(2n - 1)(1 + \epsilon) + 2 \approx 2n \;</math>.


Вопрос о существовании алгоритма аппроксимации с лучшей гарантией эффективности является главным нерешенным вопросом в теории алгоритмов аппроксимации.
Вопрос о существовании аппроксимационного алгоритма с лучшей гарантией эффективности является главным нерешенным вопросом в теории аппроксимационных алгоритмов.




4551

правка