Аноним

Метрическая задача коммивояжера: различия между версиями

Материал из WEGA
м
нет описания правки
мНет описания правки
мНет описания правки
Строка 90: Строка 90:


Рисунок 1. Пример для алгоритма Кристофидеса. В графе 2n + 1 вершин. Сплошные ребра имеют вес 1, пунктирные – вес <math>1 + \epsilon \;</math>.
Рисунок 1. Пример для алгоритма Кристофидеса. В графе 2n + 1 вершин. Сплошные ребра имеют вес 1, пунктирные – вес <math>1 + \epsilon \;</math>.


== Открытые вопросы ==
== Открытые вопросы ==
Анализ алгоритма 2 несложен. Примером может служить метрическое пополнение графа, изображенного на рис. 1. Его единственное минимальное остовное дерево состоит из всех сплошных ребер. Оно содержит только две вершины с нечетными степенями. Ребро между этими двумя вершинами имеет вес <math>(1 + \epsilon)(n + 1) \;</math>. Сокращения путей не требуется; вес обхода, вычисленного алгоритмом, равен <math>\approx 3 n \;</math>. Оптимальный обход состоит из всех пунктирных ребер, а также самого левого и самого правого сплошных ребер. Вес этого обхода составляет <math>(2n - 1)(1 + \epsilon) + 2 \approx 2n \;</math>.
Анализ алгоритма 2 несложен. Примером может служить метрическое пополнение графа, изображенного на рис. 1. Его единственное минимальное остовное дерево состоит из всех сплошных ребер. Оно содержит только две вершины с нечетными степенями. Ребро между этими двумя вершинами имеет вес <math>(1 + \epsilon)(n + 1) \;</math>. Сокращения путей не требуется; вес обхода, вычисленного алгоритмом, равен <math>\approx 3 n \;</math>. Оптимальный обход состоит из всех пунктирных ребер, а также самого левого и самого правого сплошных ребер. Вес этого обхода составляет <math>(2n - 1)(1 + \epsilon) + 2 \approx 2n \;</math>.


Вопрос о существовании алгоритма аппроксимации с лучшей гарантией эффективности является главным нерешенным вопросом а теории алгоритмов аппроксимации.
Вопрос о существовании алгоритма аппроксимации с лучшей гарантией эффективности является главным нерешенным вопросом в теории алгоритмов аппроксимации.




Хельд и Карп [2] разработали алгоритм на основе линейного программирования, вычисляющий нижнюю границу веса оптимального обхода для задачи коммивояжера. Была предложена гипотеза, что вес оптимального обхода для задачи коммивояжера не более чем в 4/3 раза превышает его нижнюю границу; однако эта гипотеза уже более 30 лет остается недоказанной. Алгоритмическое доказательство гипотезы позволило бы получить алгоритм 4/3-аппроксимации для метрической задачи коммивояжера.
Хельд и Карп [2] разработали алгоритм на основе линейного программирования, вычисляющий нижнюю границу веса оптимального обхода для задачи коммивояжера. Была предложена гипотеза, что вес оптимального обхода для задачи коммивояжера не более чем в 4/3 раза превышает его нижнюю границу; однако эта гипотеза уже более 30 лет остается недоказанной. Алгоритмическое доказательство гипотезы позволило бы получить алгоритм 4/3-аппроксимации для метрической задачи коммивояжера.


== Экспериментальные результаты ==
== Экспериментальные результаты ==
В работе [3] было отмечено отклонение в 10-15% от оптимального (говоря точнее – от границы Хельда-Карпа) на различных экземплярах задачи.
В работе [3] было отмечено отклонение в 10-15% от оптимального (точнее говоря, от границы Хельда-Карпа) на различных экземплярах задачи.




== Наборы данных ==
== Наборы данных ==
На странице 8-го тура задач по реализации DIMACS по адресу www.research.att.com/~dsj/chtsp/ можно найти множество экземпляров.
На странице 8-го тура задач по реализации DIMACS по адресу http://www.research.att.com/~dsj/chtsp/ можно найти множество экземпляров.




Строка 113: Строка 115:
== Литература ==
== Литература ==


Кристофидес не публиковал самостоятельно свой алгоритм. Он обычно цитируется как один из двух технических отчетов Университета Карнеги-Меллона – TR 388 Института индустриальных исследований (теперь он называется Школой бизнеса Теппера) и CS-93-13. Ни один из них в настоящее время не доступен в Университете Карнеги-Меллона [из личной переписки с Фрэнком Бальбахом Balbach, 2006 г.]. В материалах конференции были приведены тезисы объемом в 1 страницу. Однако алгоритм быстро проложил себе дорогу в учебники по теории алгоритмов; см., например, [7].
Кристофидес не публиковал самостоятельно свой алгоритм. Он обычно цитируется по одному из двух технических отчетов Университета Карнеги-Меллона – TR 388 Института индустриальных исследований (теперь он называется Школой бизнеса Теппера) и CS-93-13. Ни один из них в настоящее время не доступен в Университете Карнеги-Меллона [из личной переписки с Фрэнком Бальбахом Balbach, 2006 г.]. В материалах конференции были приведены тезисы объемом в 1 страницу. Однако алгоритм быстро проложил себе дорогу в учебники по теории алгоритмов; см., например, [7].
 


1. Christofides, N.: Worst case analysis of a new heuristic for the traveling salesman problem, Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, (1976). Also: Carnegie-Mellon University Technical Report CS-93-13, 1976. Abstract in Traub, J.F. (ed.) Symposium on new directions and recent results in algorithms and complexity, pp. 441. Academic Press, New York (1976)
1. Christofides, N.: Worst case analysis of a new heuristic for the traveling salesman problem, Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, (1976). Also: Carnegie-Mellon University Technical Report CS-93-13, 1976. Abstract in Traub, J.F. (ed.) Symposium on new directions and recent results in algorithms and complexity, pp. 441. Academic Press, New York (1976)
4551

правка