4510
правок
Irina (обсуждение | вклад) (Новая страница: «== Ключевые слова и синонимы == Алгоритмическое охлаждение спинов; алгоритмическое охлаждение теплового резервуара == Постановка задачи == Объединение концепций, взятых из областей квантовых вычислений, сжатия данных и термодинамики, недавно привело к...») |
Irina (обсуждение | вклад) |
||
Строка 6: | Строка 6: | ||
• Ведущей технологией-кандидатом для создания квантовых компьютеров является ядерно-магнитный резонанс (ЯМР). Преимущество этой технологии в том, что она хорошо зарекомендовала себя в других областях, таких как химия и медицина. Поэтому она не требует нового и экзотического оборудования, в отличие от ионных ловушек, оптических решеток и т. д. Однако при использовании стандартных методов ЯМР (не только для квантовых вычислений) приходится мириться с тем, что состояние может быть инициализировано только очень шумным способом: спины частиц направлены в основном в случайные стороны, с небольшим смещением в сторону желаемого состояния. Ключевая идея Шульмана и Вазирани [ ] состоит в том, чтобы объединить инструменты сжатия данных и квантовых вычислений и предложить масштабируемый процесс инициализации состояния – «тепловой двигатель молекулярного масштаба». Основываясь на методе Шульмана и Вазирани, Бойкин, Мор, Ройчоудхури, Ватан и Вриджен [ ] разработали новый процесс – «алгоритмическое охлаждение теплового резервуара», чтобы значительно улучшить процесс инициализации состояния за счет открытия системы для окружающей среды. Поразительно, но это дало возможность использовать феномен декогеренции, который в квантовых вычислениях обычно считается главным «злодеем». Эти два метода теперь иногда называют «алгоритмическим охлаждением закрытой системы» (или «обратимым») и «алгоритмическим охлаждением открытой системы», соответственно. | • Ведущей технологией-кандидатом для создания квантовых компьютеров является ядерно-магнитный резонанс (ЯМР). Преимущество этой технологии в том, что она хорошо зарекомендовала себя в других областях, таких как химия и медицина. Поэтому она не требует нового и экзотического оборудования, в отличие от ионных ловушек, оптических решеток и т. д. Однако при использовании стандартных методов ЯМР (не только для квантовых вычислений) приходится мириться с тем, что состояние может быть инициализировано только очень шумным способом: спины частиц направлены в основном в случайные стороны, с небольшим смещением в сторону желаемого состояния. Ключевая идея Шульмана и Вазирани [13] состоит в том, чтобы объединить инструменты сжатия данных и квантовых вычислений и предложить ''масштабируемый'' процесс инициализации состояния – «тепловой двигатель молекулярного масштаба». Основываясь на методе Шульмана и Вазирани, Бойкин, Мор, Ройчоудхури, Ватан и Вриджен [2] разработали новый процесс – «алгоритмическое охлаждение теплового резервуара», чтобы значительно улучшить процесс инициализации состояния за счет открытия системы для окружающей среды. Поразительно, но это дало возможность использовать феномен декогеренции, который в квантовых вычислениях обычно считается главным «злодеем». Эти два метода теперь иногда называют «алгоритмическим охлаждением закрытой системы» (или «обратимым») и «алгоритмическим охлаждением открытой системы», соответственно. | ||
• Далеко идущие последствия этого исследования заключаются в возможности выхода за пределы потенциальной реализации квантовых вычислительных устройств далекого будущего. Эффективная техника создания ансамблей спинов, сильно поляризованных внешними магнитными полями, считается Святым Граалем ЯМР-спектроскопии. Ядра с полуцелыми спинами имеют стационарные поляризационные смещения, которые увеличиваются обратно пропорционально температуре; поэтому спины, поляризационные смещения которых выше их термически равновесных смещений, считаются охлажденными. Такие охлажденные спины обеспечивают улучшенное соотношение сигнал/шум при использовании в ЯМР-спектроскопии или визуализации. Существующие методы охлаждения спинов ограничены по своей эффективности и полезности. Алгоритмическое охлаждение представляет собой новый многообещающий подход к охлаждению спинов, использующий методы сжатия данных в открытых системах. Она снижает энтропию спинов до уровня, намного превышающего энтропийный предел Шеннона для обратимых манипуляций с энтропией, тем самым увеличивая их поляризационные смещения. В результате можно предположить, что метод алгоритмического охлаждения открытой системы может быть использован для оптимизации текущих способов применения ЯМР в таких областях, как химия, материаловедение и даже медицина, поскольку ядерно-магнитный резонанс лежит в основе МРТ – магнитно-резонансной томографии. | • Далеко идущие последствия этого исследования заключаются в возможности выхода за пределы потенциальной реализации квантовых вычислительных устройств далекого будущего. Эффективная техника создания ансамблей спинов, сильно поляризованных внешними магнитными полями, считается Святым Граалем ЯМР-спектроскопии. Ядра с полуцелыми спинами имеют стационарные поляризационные смещения, которые увеличиваются обратно пропорционально температуре; поэтому спины, поляризационные смещения которых выше их термически равновесных смещений, считаются ''охлажденными''. Такие охлажденные спины обеспечивают улучшенное соотношение сигнал/шум при использовании в ЯМР-спектроскопии или визуализации. Существующие методы охлаждения спинов ограничены по своей эффективности и полезности. Алгоритмическое охлаждение представляет собой новый многообещающий подход к охлаждению спинов, использующий методы сжатия данных в ''открытых системах''. Она снижает энтропию спинов до уровня, намного превышающего энтропийный предел Шеннона для обратимых манипуляций с энтропией, тем самым увеличивая их поляризационные смещения. В результате можно предположить, что метод алгоритмического охлаждения открытой системы может быть использован для оптимизации текущих способов применения ЯМР в таких областях, как химия, материаловедение и даже медицина, поскольку ядерно-магнитный резонанс лежит в основе МРТ – магнитно-резонансной томографии. | ||
== Основные положения == | == Основные положения == |
правок