1294
правки
Irina (обсуждение | вклад) |
KVN (обсуждение | вклад) |
||
(не показано 6 промежуточных версий 1 участника) | |||
Строка 6: | Строка 6: | ||
Обозначим за A множество приемлемых пар в <math>I</math> | Обозначим за A множество приемлемых пар в <math>I</math> и положим L = |A|. ''Назначение'' M является подмножеством A. Если <math>(r_i, h_j) \in M</math>, то говорят, что резидент <math>r_i</math> ''назначен'' больнице <math>h_j</math>, а больница <math>h_j</math> – резиденту <math>r_i</math>. Для каждого элемента <math>q \in R \cup H</math> множество назначенных q в M обозначается M(q). Если <math>r_i \in R</math> и <math>M(r_i) = \empty</math>, то считается, что <math>r_i</math> ''не назначен'', в противном случае <math>r_i</math> назначен. Аналогично, любая больница <math>h_j \in H</math> является ''недоукомплектованной'', ''полной'' или ''переукомплектованной'', если <math>|M(h_j)|</math> меньше, равна или больше <math>c_j</math>, соответственно. | ||
''Паросочетанием'' M называется назначение, такое, что <math>|M(r_i)| \le 1</math> для каждого <math>r_i \in R</math> и <math>|M(h_j)| \le c_j</math> для каждого <math>h_j \in H</math> (т. е. ни один резидент не назначен в неприемлемую больницу, каждый резидент назначен не более чем в одну больницу и ни одна больница не переукомплектована). Для удобства обозначений, если даны паросочетание M и резидент <math>r_i \in R</math> такой, что <math>M(r_i) \ne \empty</math>, то в случаях, когда это не вызывает двусмысленности, обозначение <math>M(r_i)</math> также используется для обозначения единственного члена <math>M(r_i)</math>. | ''Паросочетанием'' M называется назначение, такое, что <math>|M(r_i)| \le 1</math> для каждого <math>r_i \in R</math> и <math>|M(h_j)| \le c_j</math> для каждого <math>h_j \in H</math> (т. е. ни один резидент не назначен в неприемлемую больницу, каждый резидент назначен не более чем в одну больницу и ни одна больница не переукомплектована). Для удобства обозначений, если даны паросочетание M и резидент <math>r_i \in R</math>, такой, что <math>M(r_i) \ne \empty</math>, то в случаях, когда это не вызывает двусмысленности, обозначение <math>M(r_i)</math> также используется для обозначения единственного члена <math>M(r_i)</math>. | ||
Строка 22: | Строка 22: | ||
==Основные результаты== | ==Основные результаты== | ||
Впервые задача HR была определена Гэйлом и Шепли [5] под названием «Задача о поступлении в колледж». В своей основополагающей статье авторы рассматривают классическую задачу о стабильных браках (SM; см. [[Стабильный брак]] и [[Оптимальный стабильный брак]]), представляющую собой частный случай HR, в котором <math>n = m, A = R \times H</math> и <math>c_j = 1</math> для всех <math>h_j \in H</math>; в этом частном случае вместо резидентов и больниц мы имеем дело с мужчинами и женщинами, соответственно. Гэйл и Шепли показали, что каждый экземпляр <math>I</math> задачи HR допускает по крайней мере одно устойчивое паросочетание. Доказательство этого результата носит конструктивный характер, то есть описывается алгоритм нахождения устойчивого паросочетания в I. Этот алгоритм получил название ''алгоритма Гэйла-Шепли'' [https://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%93%D1%8D%D0%B9%D0%BB%D0%B0_%E2%80%94_%D0%A8%D0%B5%D0%BF%D0%BB%D0%B8]. | Впервые задача HR была определена Гэйлом и Шепли [5] под названием «Задача о поступлении в колледж». В своей основополагающей статье авторы рассматривают классическую задачу о стабильных браках (SM; см. [[Стабильный брак]] и [[Оптимальный стабильный брак]]), представляющую собой частный случай HR, в котором <math>n = m, A = R \times H</math> и <math>c_j = 1</math> для всех <math>h_j \in H</math>; в этом частном случае вместо резидентов и больниц мы имеем дело с мужчинами и женщинами, соответственно. Гэйл и Шепли показали, что каждый экземпляр <math>I</math> задачи HR допускает по крайней мере одно устойчивое паросочетание. Доказательство этого результата носит конструктивный характер, то есть описывается алгоритм нахождения устойчивого паросочетания в <math>I</math>. Этот алгоритм получил название ''алгоритма Гэйла-Шепли'' [https://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%93%D1%8D%D0%B9%D0%BB%D0%B0_%E2%80%94_%D0%A8%D0%B5%D0%BF%D0%BB%D0%B8]. | ||
<math>M := \empty</math> | <math>M := \empty</math> | ||
Строка 71: | Строка 71: | ||
==Применение== | ==Применение== | ||
Практические приложения задачи HR широко распространены. В первую очередь они возникают в контексте централизованных автоматизированных схем подбора кандидатов на должности (например, студентов-медиков в больницы, выпускников школ в университеты, учеников начальных школ в средние школы). Возможно, самым известным примером такой схемы является Национальная программа подбора резидентов (National Resident Matching Program, NRMP) в США [16], которая ежегодно распределяет около 31 000 | Практические приложения задачи HR широко распространены. В первую очередь они возникают в контексте централизованных автоматизированных схем подбора кандидатов на должности (например, студентов-медиков в больницы, выпускников школ – в университеты, учеников начальных школ – в средние школы). Возможно, самым известным примером такой схемы является Национальная программа подбора резидентов (National Resident Matching Program, NRMP) в США [16], которая ежегодно распределяет около 31 000 выпускников медицинских университетов (называемых резидентами) на их первые должности в больницах, учитывая предпочтения резидентов по отношению к больницам и наоборот, а также кадровый потенциал больниц. Аналоги программы NRMP существуют и в других странах, включая Канаду [17], Шотландию [18] и Японию [19]. Эти схемы подбора в основном используют расширения алгоритма RGS для задачи HR. | ||
Строка 83: | Строка 83: | ||
Другие варианты задачи HR возникают в случаях, если списки предпочтений включают связи. Это расширение также очень важно с практической точки зрения, поскольку может быть нереалистично ожидать, что популярная больница расположит большое количество претендентов в строгом порядке, особенно если она не учитывает группы претендентов. Расширение задачи HR, в котором списки предпочтений могут включать связи, обозначается HRT. В этом контексте возникают три естественных определения устойчивости, так называемые ''слабая устойчивость'', ''сильная устойчивость'' и ''сверхустойчивость'' (формальные определения этих понятий см. в [8]). Известно, что слабоустойчивые паросочетания в экземпляре <math>I</math> задачи HRT могут иметь различные размеры, и | Другие варианты задачи HR возникают в случаях, если списки предпочтений включают связи. Это расширение также очень важно с практической точки зрения, поскольку может быть нереалистично ожидать, что популярная больница расположит большое количество претендентов в строгом порядке, особенно если она не учитывает группы претендентов. Расширение задачи HR, в котором списки предпочтений могут включать связи, обозначается HRT. В этом контексте возникают три естественных определения устойчивости, так называемые ''слабая устойчивость'', ''сильная устойчивость'' и ''сверхустойчивость'' (формальные определения этих понятий см. в [8]). Известно, что слабоустойчивые паросочетания в экземпляре <math>I</math> задачи HRT могут иметь различные размеры, и задача нахождения слабоустойчивого паросочетания максимальной мощности является NP-сложной (подробнее об этом см. [[Задача о стабильных браках со связями и неполными списками]]). С другой стороны, в отличие от случая слабой устойчивости, сверхустойчивое паросочетание не обязательно должно существовать в экземпляре <math>I</math>, хотя предложен алгоритм с временем выполнения O(L) для поиска такого паросочетания в случае его существования. Аналогичные результаты имеют место и в случае сильной устойчивости – в этом случае алгоритм с временем выполнения <math>O(L^2)</math> [8] был улучшен алгоритмом с временем выполнения O(CL) [10] и распространен на случай «от многих к многим» [11]. Кроме того, аналоги теоремы о сельских больницах справедливы для HRT при каждом из критериев сверхустойчивости и сильной устойчивости [7, 15]. | ||
Строка 89: | Строка 89: | ||
==Открытые вопросы== | ==Открытые вопросы== | ||
Было сформулировано несколько | Было сформулировано несколько аппроксимационных алгоритмов поиска слабоустойчивого паросочетания максимальной мощности для экземпляра HRT, в котором каждая больница имеет кадровый потенциал 1 (подробнее об этом см. [[Задача о стабильных браках со связями и неполными списками]]). Остается открытым вопрос о расширении этих алгоритмов или о формулировании эффективных эвристик для случая HRT с произвольными значениями кадрового потенциала. Эта задача особенно актуальна с практической точки зрения, поскольку, как уже отмечалось в разделе «Применение», больницы могут захотеть включить связи в свои списки предпочтений. В этом случае слабая устойчивость является наиболее часто используемым критерием устойчивости, поскольку существование такого паросочетания гарантируется. Попытка обеспечить совпадение для как можно большего числа резидентов мотивирует на поиск больших слабоустойчивых паросочетаний. | ||
==Ссылка на код== | ==Ссылка на код== | ||
Строка 95: | Строка 95: | ||
==См. также== | ==См. также== | ||
*[[ | *[[Оптимальный стабильный брак]] | ||
*[[Ранжированное паросочетание]] | *[[Ранжированное паросочетание]] | ||
*[[ | *[[Задача о стабильных браках ]] | ||
*[[ | *[[Задача о стабильных браках и дискретный выпуклый анализ]] | ||
*[[ | *[[Задача о стабильных браках со связями и неполными списками]] | ||
*[[Задача об устойчивом разбиении]] | *[[Задача об устойчивом разбиении]] | ||
Строка 140: | Строка 140: | ||
19. http://www.jrmp.jp (Japan Resident Matching Program website) | 19. http://www.jrmp.jp (Japan Resident Matching Program website) | ||
[[Категория: Совместное определение связанных терминов]] |