1294
правки
Irina (обсуждение | вклад) мНет описания правки |
KVN (обсуждение | вклад) |
||
(не показаны 3 промежуточные версии 1 участника) | |||
Строка 87: | Строка 87: | ||
Для LP-декодирования и смежных понятий были получены другие важные результаты, которые здесь не упоминаются. Некоторые из этих общих областей рассматриваются в следующем разделе; подробную библиографию можно найти в работе [3]. | Для LP-декодирования и смежных понятий были получены многие другие важные результаты, которые здесь не упоминаются. Некоторые из этих общих областей рассматриваются в следующем разделе; подробную библиографию можно найти в работе [3]. | ||
'''Коды с малой плотностью проверок на четность''' | '''Коды с малой плотностью проверок на четность''' | ||
Политоп <math>\mathcal{P}</math> для LDPC-кодов, впервые определенный в [4, 8, 10], основан на лежащем в основе кода ''графе Таннера'' и имеет линейное число переменных и ограничений. Если граф Таннера достаточным образом | Политоп <math>\mathcal{P}</math> для LDPC-кодов, впервые определенный в [4, 8, 10], основан на лежащем в основе кода ''графе Таннера'' и имеет линейное число переменных и ограничений. Если граф Таннера достаточным образом расширяется, то известно, что LP-декодирование способно исправить постоянную долю ошибок в канале и, таким образом, имеет обратный экспоненциальному коэффициент ошибок. Это было доказано с помощью двойственной задачи: | ||
'''Теорема 1 [6]. Для | '''Теорема 1 [6]. Для любой скорости r > 0 имеется константа <math>\epsilon > 0</math> такая, что существует семейство передаваемых со скоростью <math>r</math> LDPC-кодов длины n, при работе с которым LP-декодер успешен до тех пор, пока каналом инвертированы не более <math>\epsilon n</math> разрядов. Отсюда следует, что существует константа <math>\epsilon' > 0</math>, такая, что вероятность ошибок в кодовых словах на канале <math>BSC_p</math> с <math>p < \epsilon'</math> составляет не более <math>2^{- \Omega(n)}</math>.''' | ||
'''Коды расширителей''' | '''Коды расширителей''' | ||
''Пропускная способность'' канала связи ограничивает сверху | ''Пропускная способность'' канала связи ограничивает сверху скорость, которой можно достичь для некоторого семейства кодов и при этом получить вероятность ошибок в кодовых словах, стремящуюся к нулю по мере увеличения длины кода. Обозначим за <math>\mathcal{C}_p</math> пропускную способность канала <math>BSC_p</math>. Используя семейство кодов, основанных на расширителях [12], LP-декодирование может достичь скорости, приближающейся к пропускной способности. Однако, по сравнению с LDPC-кодами, это достигается ценой увеличения сложности декодирования, так как размер линейной программы экспоненциально зависит от разницы между скоростью и пропускной способностью. | ||
'''Теорема 2 [7]. Для любого p > 0 и любой скорости <math>r < \mathcal{C}_p</math> существует семейство кодов расширителей длины n, такое, что вероятность ошибок в кодовых словах при LP-декодировании в <math>BSC_p</math> составляет не более <math>2^{- \Omega(n)}</math>.''' | '''Теорема 2 [7]. Для любого p > 0 и любой скорости <math>r < \mathcal{C}_p</math> существует семейство передаваемых со скоростью <math>r</math> кодов расширителей длины n, такое, что вероятность ошибок в кодовых словах при LP-декодировании в <math>BSC_p</math> составляет не более <math>2^{- \Omega(n)}</math>.''' | ||
'''Турбокоды''' | '''Турбокоды''' | ||
Преимуществом турбокодов [2] является то, что они могут | Преимуществом турбокодов [2] является то, что они могут кодироваться за линейное время, даже в потоковом режиме. Простой формой турбокода являются ''коды с повторением и накоплением''. LP-декодер для турбокодов и их разновидностей был впервые определен в работах [4, 5] и основывался на ''решетчатой'' структуре компонентных ''сверточных'' кодов. Из-за некоторых свойств турбокодов невозможно доказать для них столь же сильные границы, как для LDPC-кодов, однако известно следующее: | ||
'''Теорема 3 [5]. | '''Теорема 3 [5]. Существуют семейство передаваемых со скоростью 1/2 - o(1) кодов с повторением и накоплением длины n и константа <math>\epsilon > 0</math>, такая, что в канале <math>BSC_p</math> при <math>p < \epsilon</math> вероятность ошибок LP-декодера в кодовых словах не превышает <math>n^{- \Omega(1)}</math>.''' | ||
== Применение == | == Применение == | ||
Строка 124: | Строка 123: | ||
Еще один интересный вопрос – существуют ли семейства кодов с линейным расстоянием и постоянной скоростью, для точного декодирования которых можно разработать линейные программы полиномиального размера. Другими словами, есть ли семейства кодов с описанными характеристиками, выпуклые | Еще один интересный вопрос – существуют ли семейства кодов с линейным расстоянием и постоянной скоростью, для точного декодирования которых можно разработать линейные программы полиномиального размера. Другими словами, есть ли семейства кодов с описанными характеристиками, выпуклые оболочки которых имеют полиномиальное число граней? Если да, то для такого семейства LP-декодирование будет эквивалентно ML-декодированию. Если нет, то это служит убедительным доказательством распространенного мнения, заключающегося в том, что субоптимальное декодирование при использовании хороших кодов неизбежно. | ||
Строка 168: | Строка 167: | ||
15. Wiberg, N.: Codes and Decoding on General Graphs, Ph. D. thesis, Linkoping University, Sweden (1996) | 15. Wiberg, N.: Codes and Decoding on General Graphs, Ph. D. thesis, Linkoping University, Sweden (1996) | ||
[[Категория: Совместное определение связанных терминов]] |