4501
правка
Irina (обсуждение | вклад) (Новая страница: «== Ключевые слова и синонимы == Парное локальное выравнивание с аффинными штрафами за отк…») |
Irina (обсуждение | вклад) мНет описания правки |
||
(не показано 12 промежуточных версий этого же участника) | |||
Строка 1: | Строка 1: | ||
== Ключевые слова и синонимы == | == Ключевые слова и синонимы == | ||
Парное локальное выравнивание с аффинными штрафами за | Парное локальное выравнивание с аффинными штрафами за гэп | ||
== Постановка задачи == | |||
Задача парного локального выравнивания связана с определением пары похожих подстрок в двух молекулярных последовательностях. В компьютерных науках эта задача изучалась более сорока лет. Однако до 1974 года большинство моделей задачи, как правило, не были удовлетворительными с биологической точки зрения либо не поддавались интерпретации. В 1974 году Питер Селлерс разработал метрическую меру сходства между молекулярными последовательностями. Уотермен и др. (1976) обобщили эту метрику, включив в нее вставки (инсерции) и удаления (делеции) произвольной длины, которые представляют собой минимальное количество мутационных событий, необходимых для преобразования одной последовательности в другую. | Задача парного локального выравнивания связана с определением пары похожих подстрок в двух молекулярных последовательностях. В компьютерных науках эта задача изучалась более сорока лет. Однако до 1974 года большинство моделей задачи, как правило, не были удовлетворительными с биологической точки зрения либо не поддавались интерпретации. В 1974 году Питер Селлерс разработал метрическую меру сходства между молекулярными последовательностями. Уотермен и др. (1976) обобщили эту метрику, включив в нее вставки (инсерции) и удаления (делеции) произвольной длины, которые представляют собой минимальное количество мутационных событий, необходимых для преобразования одной последовательности в другую. | ||
Пусть даны две последовательности, S и T. Парное выравнивание представляет собой способ вставки символов пробелов '_' в S и T для формирования последовательностей S' и | Пусть даны две последовательности, S и T. Парное выравнивание представляет собой способ вставки символов пробелов '_' в S и T для формирования последовательностей S' и T', соответственно, с той же длиной. Выравнивание двух последовательностей может производиться различными способами. Оценка выравнивания измеряется метрикой <math>\delta(x, y)</math>. В каждой позиции i, где x и y не являются пробелами, сходство между S'[i] и T'[i] измеряется значением <math>\delta(S'[i], T'[j])</math>. Обычно <math>\delta(x, y)</math> положительно, когда x и y одинаковы, и отрицательно, когда x и y различны. Для позиций с последовательными символами пробела оценки выравнивания символов пробела не рассматриваются независимо; это связано с тем, что вставка или удаление длинного участка в молекулярных последовательностях более вероятна, чем вставка или удаление нескольких коротких участков. Смит и Уотермен используют аффинный штраф за гэп для моделирования сходства в позициях с символами пробелов. Они определяют последовательную подстроку с пробелами в S' или T' как ''гэп''. Для каждого гэпа длиной <math>l</math> они назначают линейный штраф <math>W_k = W_s + l \times W_p</math>, где <math>W_s</math> и <math>W_p</math> – некоторые заранее определенные положительные константы. Оценка выравнивания представляет собой сумму оценок в каждой позиции i минус штрафы за каждый гэп. Например, оценка следующего выравнивания равна <math>\delta(G, G) + \delta(C, C) + \delta(C, C) + \delta(U, C) + \delta(G, G) - (W_s + 2 \times W_p)</math>. | ||
S: GCCAUUG | |||
Оптимальное глобальное выравнивание последовательностей S и T – это выравнивание S и T с максимальной выравнивания. | T: GCC__CG | ||
Оптимальное глобальное выравнивание последовательностей S и T – это выравнивание S и T с максимальной оценкой выравнивания. | |||
Иногда мы хотим узнать, содержат ли последовательности S и T похожие подстроки, а не то, похожи ли S и T. В этом случае решается задача парного локального выравнивания, которая заключается в поиске подстроки U в последовательности S и другой подстроки V в T, такой, что глобальная оценка выравнивания U и V максимальна. | |||
'''Задача парного локального выравнивания''' | '''Задача парного локального выравнивания''' | ||
Дано: две последовательности S[1 | Дано: две последовательности S[1..n] и T[1..m]. | ||
Требуется: найти подстроку U в S и подстроку V в T, такие, что оптимальное глобальное выравнивание U и V максимально. | Требуется: найти подстроку U в S и подстроку V в T, такие, что оптимальное глобальное выравнивание U и V максимально. | ||
== Основные результаты == | == Основные результаты == | ||
Задача попарного локального выравнивания может быть решена за время O(mn) с использованием O(mn) памяти при помощи динамического программирования. Алгоритм должен заполнить четыре таблицы H, | Задача попарного локального выравнивания может быть решена за время O(mn) с использованием O(mn) памяти при помощи динамического программирования. Алгоритм должен заполнить четыре таблицы <math>H, H_N, H_S, H_T</math> размером m x n, где на каждую запись требуется константное время. Эти таблицы содержат следующие значения. | ||
H(i,j): максимальная оценка глобального выравнивания U и V над всеми суффиксами U в S[1 | <math>H(i, j)</math>: максимальная оценка глобального выравнивания U и V над всеми суффиксами U в S[1..i] и всеми суффиксами V в T[1..j]. | ||
<math>H_N(i, j)</math>: максимальная оценка глобального выравнивания U и V над всеми суффиксами U в S[1..i] и всеми суффиксами V в T[1..j], с ограничением, согласно которому S[i] и T[j] должны быть выровнены. | |||
<math>H_S(i, j)</math>: максимальная оценка глобального выравнивания U и V над всеми суффиксами U в S[1..i] и всеми суффиксами V в T[1..j], где S[j] выровнен с символом пробела. | |||
<math>H_T(i, j)</math>: максимальная оценка глобального выравнивания U и V над всеми суффиксами U в S[1..i] и всеми суффиксами V в T[1..j], где T[j] выровнен с символом пробела. | |||
Оценка оптимального локального выравнивания S и T будет равна | Оценка оптимального локального выравнивания S и T будет равна max{H(i, j)}, а локальное выравнивание S и T может быть найдено путем обратного обхода таблицы H. | ||
Строка 40: | Строка 44: | ||
Базовый шаг: | Базовый шаг: | ||
<math>H(i, 0) = H(0, j) = 0, 0 \le i \le n, 0 \le j \le m</math> | |||
<math>H_N(i, 0) = H_N(0, j) = - \infty, 0 \le i \le n, 0 \le j \le m</math> | |||
<math>H_S(i, 0) = H_T(0, j) = W_s + W_p, 0 \le i \le n, 0 \le j \le m</math> | |||
<math>H_S(0, j) = H_T(i, 0) = - \infty, 0 \le i \le n, 0 \le j \le m</math> | |||
Шаг рекурсии: | Шаг рекурсии: | ||
<math>H(i, j) = max \{H_N(i, j), H_S(i, j), H_T(i, j), 0 \}, 1 \le i \le n, 1 \le j \le m</math> | |||
<math>H_N(i, j) = H(i - 1, j - 1) + \delta(s[i], T[j]), 1 \le i \le n, 1 \le j \le m</math> | |||
<math>H_S(i, j) = max \{ H(i - 1, j) - (W_s + W_p), H_S(i - 1, j) - W_p \}, 1 \le i \le n, 1 \le j \le m</math> | |||
<math>H_T(i, j) = max \{ H(i, j - 1) - (W_s + W_p), H_T(i, j - 1) - W_p \}, 1 \le i \le n, 1 \le j \le m</math> | |||
== Применение == | == Применение == | ||
Локальное выравнивание с аффинными штрафами за | Локальное выравнивание с аффинными штрафами за гэп может использоваться для классификации белков, филогенетического футпринтинга и идентификации функциональных элементов последовательности. | ||
== Ссылка на код == | == Ссылка на код == | ||
Строка 52: | Строка 71: | ||
== См. также == | == См. также == | ||
* [[Эффективные методы множественного выравнивания последовательностей с гарантированными границами | * [[Эффективные методы множественного выравнивания последовательностей с гарантированными границами ошибок]] | ||
* [[Локальное выравнивание (с вогнутыми штрафами за | * [[Локальное выравнивание (с вогнутыми штрафами за гэп)]] | ||
== Литература == | == Литература == |
правка