Локальное выравнивание (с аффинными штрафами за гэп): различия между версиями

Перейти к навигации Перейти к поиску
м
нет описания правки
(Новая страница: «== Ключевые слова и синонимы == Парное локальное выравнивание с аффинными штрафами за отк…»)
 
мНет описания правки
 
(не показано 12 промежуточных версий этого же участника)
Строка 1: Строка 1:
== Ключевые слова и синонимы ==
== Ключевые слова и синонимы ==
Парное локальное выравнивание с аффинными штрафами за открытие гэпа
Парное локальное выравнивание с аффинными штрафами за гэп


== Постановка задачи ==
== Постановка задачи ==
Задача парного локального выравнивания связана с определением пары похожих подстрок в двух молекулярных последовательностях. В компьютерных науках эта задача изучалась более сорока лет. Однако до 1974 года большинство моделей задачи, как правило, не были удовлетворительными с биологической точки зрения либо не поддавались интерпретации. В 1974 году Питер Селлерс разработал метрическую меру сходства между молекулярными последовательностями. Уотермен и др. (1976) обобщили эту метрику, включив в нее вставки (инсерции) и удаления (делеции) произвольной длины, которые представляют собой минимальное количество мутационных событий, необходимых для преобразования одной последовательности в другую.
Задача парного локального выравнивания связана с определением пары похожих подстрок в двух молекулярных последовательностях. В компьютерных науках эта задача изучалась более сорока лет. Однако до 1974 года большинство моделей задачи, как правило, не были удовлетворительными с биологической точки зрения либо не поддавались интерпретации. В 1974 году Питер Селлерс разработал метрическую меру сходства между молекулярными последовательностями. Уотермен и др. (1976) обобщили эту метрику, включив в нее вставки (инсерции) и удаления (делеции) произвольной длины, которые представляют собой минимальное количество мутационных событий, необходимых для преобразования одной последовательности в другую.




Пусть даны две последовательности, S и T. Парное выравнивание представляет собой способ вставки символов пробелов '_' в S и T для формирования последовательностей S' и Г, соответственно, с той же длиной. Выравнивание двух последовательностей может производиться различными способами. Оценка выравнивания измеряется метрикой S(x,y). В каждой позиции i, где x и y не являются пробелами, сходство между S'[i] и T'[i] измеряется 8(S'[i], T'[j]). Обычно S(x,y) положительно, когда x и y одинаковы, и отрицательно, когда x и y различны. Для позиций с последовательными символами пробела оценки выравнивания символов пробела не рассматриваются независимо; это связано с тем, что вставка или удаление длинного участка в молекулярных последовательностях более вероятна, чем вставка или удаление нескольких коротких участков. Смит и Уотермен используют аффинный штраф за гэп для моделирования сходства в позициях с символами пробелов. Они определяют последовательную подстроку с пробелами в S' или Г как гэп. Для каждого гэпа длиной l они назначают линейный штраф Wk = Ws + l x Wp для некоторых заранее определенных положительных констант Ws и Wp. Оценка выравнивания представляет собой сумму оценок в каждой позиции i минус штрафы за каждый гэп. Например, оценка следующего выравнивания равна S(G, G) + S(C, C) + S(C, C) + S(U, C) + S(G, G) - (Ws + 2 x Wp).
Пусть даны две последовательности, S и T. Парное выравнивание представляет собой способ вставки символов пробелов '_' в S и T для формирования последовательностей S' и T', соответственно, с той же длиной. Выравнивание двух последовательностей может производиться различными способами. Оценка выравнивания измеряется метрикой <math>\delta(x, y)</math>. В каждой позиции i, где x и y не являются пробелами, сходство между S'[i] и T'[i] измеряется значением <math>\delta(S'[i], T'[j])</math>. Обычно <math>\delta(x, y)</math> положительно, когда x и y одинаковы, и отрицательно, когда x и y различны. Для позиций с последовательными символами пробела оценки выравнивания символов пробела не рассматриваются независимо; это связано с тем, что вставка или удаление длинного участка в молекулярных последовательностях более вероятна, чем вставка или удаление нескольких коротких участков. Смит и Уотермен используют аффинный штраф за гэп для моделирования сходства в позициях с символами пробелов. Они определяют последовательную подстроку с пробелами в S' или T' как ''гэп''. Для каждого гэпа длиной <math>l</math> они назначают линейный штраф <math>W_k = W_s + l \times W_p</math>, где <math>W_s</math> и <math>W_p</math> – некоторые заранее определенные положительные константы. Оценка выравнивания представляет собой сумму оценок в каждой позиции i минус штрафы за каждый гэп. Например, оценка следующего выравнивания равна <math>\delta(G, G) + \delta(C, C) + \delta(C, C) + \delta(U, C) + \delta(G, G) - (W_s + 2 \times W_p)</math>.
S: GCCAUUG T: GCC__CG


S: GCCAUUG


Оптимальное глобальное выравнивание последовательностей S и T – это выравнивание S и T с максимальной выравнивания. Но иногда мы хотим узнать, содержат ли последовательности S и T похожие подстроки, а не то, похожи ли S и T. В этом случае решают задачу парного локального выравнивания, которая заключается в поиске подстроки U в S и другой подстроки V в T, такой, что глобальная оценка выравнивания U и V максимальна.
T: GCC__CG
 
 
Оптимальное глобальное выравнивание последовательностей S и T – это выравнивание S и T с максимальной оценкой выравнивания.
 
Иногда мы хотим узнать, содержат ли последовательности S и T похожие подстроки, а не то, похожи ли S и T. В этом случае решается задача парного локального выравнивания, которая заключается в поиске подстроки U в последовательности S и другой подстроки V в T, такой, что глобальная оценка выравнивания U и V максимальна.


   
   
'''Задача парного локального выравнивания'''
'''Задача парного локального выравнивания'''


Дано: две последовательности S[1::n] и T[1::m].
Дано: две последовательности S[1..n] и T[1..m].


Требуется: найти подстроку U в S и подстроку V в T, такие, что оптимальное глобальное выравнивание U и V максимально.
Требуется: найти подстроку U в S и подстроку V в T, такие, что оптимальное глобальное выравнивание U и V максимально.


== Основные результаты ==
== Основные результаты ==


Задача попарного локального выравнивания может быть решена за время O(mn) с использованием O(mn) памяти при помощи динамического программирования. Алгоритм должен заполнить четыре таблицы H, HN, HS и HT размером m x n, где на каждую запись требуется константное время. Эти таблицы содержат следующие значения.
Задача попарного локального выравнивания может быть решена за время O(mn) с использованием O(mn) памяти при помощи динамического программирования. Алгоритм должен заполнить четыре таблицы <math>H, H_N, H_S, H_T</math> размером m x n, где на каждую запись требуется константное время. Эти таблицы содержат следующие значения.


H(i,j):    максимальная оценка глобального выравнивания U и V над всеми суффиксами U в S[1::i] и всеми суффиксами V в T[1::j].
<math>H(i, j)</math>:    максимальная оценка глобального выравнивания U и V над всеми суффиксами U в S[1..i] и всеми суффиксами V в T[1..j].


HN(i,j): максимальная оценка глобального выравнивания U и V над всеми суффиксами U в S[1::i] и всеми суффиксами V в T[1::j], с ограничением, согласно которому S[i] и T[j] должны быть выровнены.
<math>H_N(i, j)</math>: максимальная оценка глобального выравнивания U и V над всеми суффиксами U в S[1..i] и всеми суффиксами V в T[1..j], с ограничением, согласно которому S[i] и T[j] должны быть выровнены.


HS(i,j):  максимальная оценка глобального выравнивания U и V над всеми суффиксами U в S[1::i] и всеми суффиксами V в T[1::j], где S[j] выровнен с символом пробела.
<math>H_S(i, j)</math>:  максимальная оценка глобального выравнивания U и V над всеми суффиксами U в S[1..i] и всеми суффиксами V в T[1..j], где S[j] выровнен с символом пробела.


HT(i,j): максимальная оценка глобального выравнивания U и V над всеми суффиксами U в S[1::i] и всеми суффиксами V в T[1::j], где T[j] выровнен с символом пробела.
<math>H_T(i, j)</math>: максимальная оценка глобального выравнивания U и V над всеми суффиксами U в S[1..i] и всеми суффиксами V в T[1..j], где T[j] выровнен с символом пробела.




Оценка оптимального локального выравнивания S и T будет равна maxfH( i;j)g, а локальное выравнивание S и T может быть найдено путем обратного обхода таблицы H.
Оценка оптимального локального выравнивания S и T будет равна max{H(i, j)}, а локальное выравнивание S и T может быть найдено путем обратного обхода таблицы H.




Строка 40: Строка 44:


Базовый шаг:
Базовый шаг:
<math>H(i, 0) = H(0, j) = 0, 0 \le i \le n, 0 \le j \le m</math>
<math>H_N(i, 0) = H_N(0, j) = - \infty, 0 \le i \le n, 0 \le j \le m</math>
<math>H_S(i, 0) = H_T(0, j) = W_s + W_p, 0 \le i \le n, 0 \le j \le m</math>
<math>H_S(0, j) = H_T(i, 0) = - \infty, 0 \le i \le n, 0 \le j \le m</math>




Шаг рекурсии:
Шаг рекурсии:


<math>H(i, j) = max \{H_N(i, j), H_S(i, j), H_T(i, j), 0 \}, 1 \le i \le n, 1 \le j \le m</math>
 
<math>H_N(i, j) = H(i - 1, j - 1) + \delta(s[i], T[j]), 1 \le i \le n, 1 \le j \le m</math>
 
<math>H_S(i, j) = max \{ H(i - 1, j) - (W_s + W_p), H_S(i - 1, j) - W_p \}, 1 \le i \le n, 1 \le j \le m</math>
 
<math>H_T(i, j) = max \{ H(i, j - 1) - (W_s + W_p), H_T(i, j - 1) - W_p \}, 1 \le i \le n, 1 \le j \le m</math>
 
== Применение ==
== Применение ==
Локальное выравнивание с аффинными штрафами за открытие гэпа может использоваться для лассификации белков, филогенетического футпринтинга и идентификации функциональных элементов последовательности.
Локальное выравнивание с аффинными штрафами за гэп может использоваться для классификации белков, филогенетического футпринтинга и идентификации функциональных элементов последовательности.


== Ссылка на код ==
== Ссылка на код ==
Строка 52: Строка 71:


== См. также ==
== См. также ==
* [[Эффективные методы множественного выравнивания последовательностей с гарантированными границами погрешности]]
* [[Эффективные методы множественного выравнивания последовательностей с гарантированными границами ошибок]]
* [[Локальное выравнивание (с вогнутыми штрафами за открытие гэпа)]]
* [[Локальное выравнивание (с вогнутыми штрафами за гэп)]]


== Литература ==
== Литература ==
4501

правка

Навигация