1294
правки
Irina (обсуждение | вклад) (Новая страница: «== Ключевые слова и синонимы == Нахождение приближенной общей подстроки == Постановка зад…») |
KVN (обсуждение | вклад) |
||
(не показано 11 промежуточных версий 1 участника) | |||
Строка 8: | Строка 8: | ||
Нахождение ближайшей подстроки (CLOSEST SUBSTRING) | Нахождение ближайшей подстроки (CLOSEST SUBSTRING) | ||
Дано: k строк | Дано: k строк <math>s_1, s_2, ..., s_k</math> над алфавитом <math>\Sigma</math> и неотрицательные целые числа d и L. | ||
Вопрос: существует ли строка s длины L, а также существует ли для всех i = 1, ..., k подстрока <math>s'_i</math> строки <math>s_i</math> длины L, такая, что <math>d_H(s, s'_i) \le d</math>? | |||
Здесь | |||
Здесь <math>d_H(s, s'_i)</math> обозначает расстояние Хэмминга между s и <math>s'_i</math>, т. е. количество позиций, в которых s и <math>s'_i</math> различаются. Согласно нотации, применявшейся в работе [7], m обозначает среднюю длину входных строк, а n – суммарный размер входных данных задачи. | |||
Строка 21: | Строка 22: | ||
Теорема 1 [4, 5]. Задача CLOSEST SUBSTRING является NP-полной и остается таковой в специальном случае CLOSEST STRING, в котором искомая строка s должна иметь ту же длину, что и исходные строки. Задача CLOSEST STRING является NP-полной даже в случае ограничения | '''Теорема 1 [4, 5]. Задача CLOSEST SUBSTRING является NP-полной и остается таковой в специальном случае CLOSEST STRING, в котором искомая строка s должна иметь ту же длину, что и исходные строки. Задача CLOSEST STRING является NP-полной даже в случае ограничения бинарным алфавитом.''' | ||
Следующая теорема дает ключевое представление об аппроксимируемости задачи: | Следующая теорема дает ключевое представление об аппроксимируемости задачи: | ||
Теорема 2 [6]. Задача CLOSEST SUBSTRING (также как CLOSEST STRING) допускает применение схем | '''Теорема 2 [6]. Задача CLOSEST SUBSTRING (также как CLOSEST STRING) допускает применение аппроксимационных схем с полиномиальным временем выполнения (PTAS), в которых целевой функцией является минимальное расстояние Хэмминга d.''' | ||
В рандомизированной версии упомянутая в теореме 2 схема PTAS с высокой вероятностью находит решение с расстоянием Хэмминга (1 + | В рандомизированной версии упомянутая в теореме 2 схема PTAS с высокой вероятностью находит решение с расстоянием Хэмминга <math>(1 + \epsilon)d_{opt}</math> для оптимального значения <math>d_{opt}</math> за время <math>(k^2 m)^{O(log|\Sigma| / \epsilon^4)}</math>. Эту рандомизированную версию PTAS можно дерандомизировать с увеличением накладных расходов. Прямолинейная и эффективная аппроксимация задачи CLOSEST STRING с коэффициентом 2 достигается путем проверки всех подстрок одной из входных строк, имеющих длину L. | ||
Строка 35: | Строка 36: | ||
Теорема 3[ ]. Задача CLOSEST SUBSTRING является W[1]-сложной относительно параметра k даже для бинарного алфавита. | '''Теорема 3 [3]. Задача CLOSEST SUBSTRING является W[1]-сложной относительно параметра k даже для бинарного алфавита.''' | ||
Теорема 4[ ]. Задача CLOSEST SUBSTRING является W[1]-сложной относительно параметра d даже для бинарного алфавита. | '''Теорема 4 [7]. Задача CLOSEST SUBSTRING является W[1]-сложной относительно параметра d даже для бинарного алфавита.''' | ||
Строка 44: | Строка 45: | ||
Теорема 4 также позволяет по-новому взглянуть на вопрос аппроксимируемости задачи: в схеме PTAS для задачи CLOSEST SUBSTRING показатель степени полинома, ограничивающего время выполнения, зависит от коэффициента аппроксимации. Эта схема не является «эффективной» PTAS (EPTAS), то есть PTAS с временем выполнения f( | Теорема 4 также позволяет по-новому взглянуть на вопрос аппроксимируемости задачи: в схеме PTAS для задачи CLOSEST SUBSTRING показатель степени полинома, ограничивающего время выполнения, зависит от коэффициента аппроксимации. Эта схема не является «эффективной» PTAS (EPTAS), то есть PTAS с временем выполнения <math>f(\epsilon) \cdot n^c</math> для некоторой функции f и некоторой константы c и, следовательно, вряд ли окажется полезной на практике. Из теоремы 4 следует, что PTAS с временем выполнения <math>n^{O(1 / \epsilon^4)}</math>, представленная в [6], скорее всего, не может быть улучшена до EPTAS. Точнее говоря, не существует PTAS с временем выполнения <math>f(\epsilon) \cdot n^{o(log \; 1 / \epsilon)}</math> для задачи CLOSEST SUBSTRING, за исключением случая, если задача 3-КНФ может быть решена за субэкспоненциальное время. Кроме того, из доказательства теоремы 4 также следует | ||
Теорема 5 [7]. Не существует | '''Теорема 5 [7]. Не существует точных алгоритмов решения задачи CLOSEST SUBSTRING за время <math>f(d, k) \cdot n^{o(log \; d)}</math> и <math>g(d, k) \cdot n^{o(log \; log \; k)}</math> для некоторых функций f и g, за исключением случая, если задача 3-КНФ может быть решена за субэкспоненциальное время.''' | ||
Для неограниченных алфавитов были получены более строгие границы за счет того, что было показано, что не существует PTAS с временем выполнения | Для неограниченных алфавитов были получены более строгие границы за счет того, что было показано, что не существует PTAS с временем выполнения <math>f(\epsilon) \cdot n^{o(1 / \epsilon)}</math> для задачи CLOSEST SUBSTRING для любой функции f, за исключением случая, если задача 3-КНФ может быть решена за субэкспоненциальное время [10]. Следующие утверждения дают возможность получить точные алгоритмы решения задачи CLOSEST SUBSTRING для небольших фиксированных значений d и k, соответствующие границе, приведенной в теореме 5: | ||
Теорема 6 [7]. Задача CLOSEST SUBSTRING может быть решена за время f(d) | '''Теорема 6 [7]. Задача CLOSEST SUBSTRING может быть решена за время <math>f(d) \cdot n^{O(log \; d)}</math> для некоторой функции f, где, более точно, <math>f(d) = |\Sigma|^{d(log \; d + 2)}</math>.''' | ||
Теорема 7 [7]. Задача CLOSEST SUBSTRING может быть решена за время g(d | '''Теорема 7 [7]. Задача CLOSEST SUBSTRING может быть решена за время <math>g(d, k) \cdot n^{O(log \; log \; k)}</math> для некоторой функции g, где, более точно, <math>g(d, k) = (|\Sigma| d)^{O(kd)}</math>.''' | ||
Относительно заданного в задаче параметра L задачу CLOSEST SUBSTRING можно тривиально решить за время <math>O(|\Sigma|^L \cdot n)</math>, проверяя все возможные строки над алфавитом <math>\Sigma</math>. | |||
== Применение == | == Применение == | ||
Алгоритмы решения задачи CLOSEST SUBSTRING широко применяются при анализе биологических последовательностей. При нахождении мотивов задача заключается в поиске «сигнала», общего для множества выбранных строк, представляющих последовательности ДНК или белка. Одним из вариантов представления таких сигналов являются приближенно сохраненные подстроки, встречающиеся в каждой из входных строк. Применение расстояния Хэмминга в качестве биологически значимой меры расстояния позволяет рассматривать задачу в формулировке CLOSEST SUBSTRING. Например, Саго [ ] изучала способы поиска мотивов при помощи решения задачи CLOSEST SUBSTRING (и ее обобщений) с использованием суффиксных деревьев; у этого подхода время выполнения в наихудшем случае составляет O( | Алгоритмы решения задачи CLOSEST SUBSTRING широко применяются при анализе биологических последовательностей. При нахождении мотивов задача заключается в поиске «сигнала», общего для множества выбранных строк, представляющих последовательности ДНК или белка. Одним из вариантов представления таких сигналов являются приближенно сохраненные подстроки, встречающиеся в каждой из входных строк. Применение расстояния Хэмминга в качестве биологически значимой меры расстояния позволяет рассматривать задачу в формулировке CLOSEST SUBSTRING. | ||
Например, Саго [9] изучала способы поиска мотивов при помощи решения задачи CLOSEST SUBSTRING (и ее обобщений) с использованием суффиксных деревьев; у этого подхода время выполнения в наихудшем случае составляет <math>O(k^2 m \cdot L^d \cdot |\Sigma|^d)</math>. Для поиска мотивов также были предложены эвристики, применимые к задаче CLOSEST SUBSTRING; в частности, Певзнер и Зе [8] представили алгоритм под названием WINNOWER, а Булер и Томпа [1] использовали технику случайных проекций. | |||
== Открытые вопросы == | == Открытые вопросы == | ||
Остается нерешенным вопрос [ ], можно ли схему | Остается нерешенным вопрос [7], можно ли аппроксимационную схему с временем выполнения <math>n^{O(1 / \epsilon^4)}</math>, предложенную в работе [6], улучшить до <math>n^{O(log \; 1 / \epsilon)}</math> в соответствии с границей, полученной на основе теоремы 4. | ||
== См. также == | == См. также == | ||
Строка 72: | Строка 74: | ||
• Задача нахождения ближайшей строки (Closest String) является специальным случаем CLOSEST SUBSTRING, в котором искомая строка s должна иметь ту же длину, что и исходные строки. | • Задача нахождения ближайшей строки (Closest String) является специальным случаем CLOSEST SUBSTRING, в котором искомая строка s должна иметь ту же длину, что и исходные строки. | ||
• Задача выбора различающей подстроки (Distinguishing Substring Selection) представляет собой обобщение CLOSEST SUBSTRING, в котором заданы второе множество входных строк и дополнительное целое число | • Задача выбора различающей подстроки (Distinguishing Substring Selection) представляет собой обобщение CLOSEST SUBSTRING, в котором заданы второе множество входных строк и дополнительное целое число d', а искомое решение в виде строки s, помимо основного требования CLOSEST SUBSTRING, должно иметь расстояние Хэмминга не менее d' от каждой подстроки длины L второго множества строк. | ||
• Задача поиска консенсусных образцов (Consensus Patterns) получается путем замены в определении задачи CLOSEST SUBSTRING максимума из расстояний Хэмминга на сумму этих расстояний. Таким образом, задача CONSENSUS PATTERNS отвечает на вопрос: | • Задача поиска консенсусных образцов (Consensus Patterns) получается путем замены в определении задачи CLOSEST SUBSTRING максимума из расстояний Хэмминга на сумму этих расстояний. Таким образом, задача CONSENSUS PATTERNS отвечает на вопрос: существует ли строка s длины L, такая, что <math>\sum_{i = 1, ... m} d_H(s, s'_i) \le d</math>? | ||
Задача CONSENSUS PATTERNS является специальным случаем задачи нахождения подстрок максимальной экономичности (SUBSTRING PARSIMONY), в которой филогенетическое дерево из определения SUBSTRING PARSIMONY представляет собой звездчатое дерево. | Задача CONSENSUS PATTERNS является специальным случаем задачи нахождения подстрок максимальной экономичности (SUBSTRING PARSIMONY), в которой филогенетическое дерево из определения SUBSTRING PARSIMONY представляет собой звездчатое дерево. | ||
Строка 98: | Строка 100: | ||
10. Wang,J., Huang, M., Cheng, J.: A Lower Bound on Approximation Algorithms for the Closest Substring Problem. In: Proceedings COCOA 2007, vol. 4616 in LNCS, pp. 291-300 (2007) | 10. Wang,J., Huang, M., Cheng, J.: A Lower Bound on Approximation Algorithms for the Closest Substring Problem. In: Proceedings COCOA 2007, vol. 4616 in LNCS, pp. 291-300 (2007) | ||
[[Категория: Совместное определение связанных терминов]] |