Эквивалентность между очередями с приоритетами и сортировкой: различия между версиями

Перейти к навигации Перейти к поиску
Строка 3: Строка 3:


== Постановка задачи ==
== Постановка задачи ==
Очередь с приоритетами представляет собой абстрактную структуру данных, поддерживающую множество из Q элементов, каждому из которых присвоено значение, называемое ключом, а также следующий набор операций [4, 7].
''Очередь с приоритетами'' представляет собой абстрактную структуру данных, поддерживающую множество из Q элементов, каждому из которых присвоено значение, называемое ключом, а также следующий набор операций [4, 7].


insert(Q, x, k): вставка элемента x с ключом k в Q.
'''insert'''(Q, x, k): вставка элемента x с ключом k в Q.


find-min(Q): возврат элемента Q с минимальным ключом; Q не изменяется.
'''find-min'''(Q): возврат элемента Q с минимальным ключом; Q не изменяется.


delete(Q, x, k): удаление элемента x с ключом k из Q.
'''delete'''(Q, x, k): удаление элемента x с ключом k из Q.




Помимо этого, нередко поддерживаются также следующие операции.
Помимо этого, нередко поддерживаются также следующие операции.


delete-min(Q): удаление элемента с минимальным ключом из Q и возврат измененного множества.
'''delete-min'''(Q): удаление элемента с минимальным ключом из Q и возврат измененного множества.


decrease-key(Q, x, k): уменьшение текущего ключа k0 элемента x до k, предполагая, что k < k0.
'''decrease-key'''(Q, x, k): уменьшение текущего ключа k' элемента x до k, предполагая, что k < k'.


meld(Q1, Q2): получая на вход очереди с приоритетами Q1 и Q2, выдает очередь с приоритетом Q1 [ Q2.
'''meld'''(<math>Q_1, Q_2</math>): получая на вход очереди с приоритетами <math>Q_1</math> и <math>Q_2</math>, выдает очередь с приоритетом <math>Q_1 \cup Q_2</math>.




Строка 40: Строка 40:
Нижеследующая информация будет полезной для более полного понимания результатов, приведенных в разделе «Основные результаты».
Нижеследующая информация будет полезной для более полного понимания результатов, приведенных в разделе «Основные результаты».


• Стандартная RAM-машина моделирует ход выполнения программы, написанной на стандартном языке программирования, таком как С. Помимо прямой и косвенной адресации и условных переходов, программа может содержать функции (например, сложение и умножение), выполняемые над константным количеством слов. Память разделена на два слова с линейной адресацией, начинающейся в 0. Время выполнения программы равно количеству выполненных команд, а объем памяти – номеру максимального использованного адреса. Длина слова представляет собой машинно-зависимый параметр, достаточно большой для хранения ключа, и является по меньшей мере логарифмической относительно количества входных ключей, что обеспечивает возможность их адресации.
• Стандартная RAM-машина моделирует ход выполнения программы, написанной на стандартном языке программирования, таком как С. Помимо прямой и косвенной адресации и условных переходов, программа может содержать функции (например, сложение и умножение), выполняемые над константным количеством слов. Память разделена на два слова с линейной адресацией, начинающейся с 0. Время выполнения программы равно количеству выполненных команд, а объем памяти – номеру максимального использованного адреса. Длина слова представляет собой машинно-зависимый параметр, достаточно большой для хранения ключа, и является по меньшей мере логарифмической относительно количества входных ключей, что обеспечивает возможность их адресации.


• Машина с указателями аналогична RAM-машине за тем исключением, что с адресами нельзя производить какие-либо действия.
• Машина с указателями аналогична RAM-машине за тем исключением, что с адресами нельзя производить какие-либо действия.


• Класс сложности AC0 включает схемы константной глубины с неограниченным коэффициентом разветвления по входу [18]. Под стандартными операциями AC0 понимают операции, доступные в C, такие, что функции над словами принадлежат к AC0. К примеру, в их число входит сложение, но не умножение.
• Класс сложности <math>AC^0</math> включает схемы константной глубины с неограниченным коэффициентом разветвления по входу [18]. Под стандартными операциями <math>AC^0</math> понимают операции, доступные в C, такие, что функции над словами принадлежат к <math>AC^0</math>. К примеру, в их число входит сложение, но не умножение.


• Целочисленные ключи ссылаются на неотрицательные целые числа. Если же входные ключи представляют собой целые числа со знаком, корректный порядок ключей можно получить в результате переключения битов, содержащих знаки, и интерпретации их как беззнаковых целых чисел. Аналогичные действия можно произвести для чисел с плавающей запятой и дробных чисел [14].
• Целочисленные ключи ссылаются на неотрицательные целые числа. Если же входные ключи представляют собой целые числа со знаком, корректный порядок ключей можно получить в результате переключения битов, содержащих знаки, и интерпретации их как беззнаковых целых чисел. Аналогичные действия можно произвести для чисел с плавающей запятой и дробных чисел [14].


• Атомарные кучи Фредмана и Уилларда [6] использовались в одной из редукций в работе [15]. Такие кучи способны поддерживать операции обновления и поиска в множествах из O(log2 n) ключей за время O(1) в худшем случае [19]. Однако атомарные кучи используют операции умножения, не принадлежащие к AC0.
• Атомарные кучи Фредмана и Уилларда [6] использовались в одной из редукций в работе [15]. Такие кучи способны поддерживать операции обновления и поиска в множествах из <math>O(log^2 \; n)</math> ключей за время O(1) в худшем случае [19]. Однако атомарные кучи используют операции умножения, не принадлежащие к <math>AC^0</math>.


== Основные результаты ==
== Основные результаты ==
4511

правок

Навигация