4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 65: | Строка 65: | ||
Для случая, когда P записывается в виде произведения политопов меньшей размерности, т. е. <math>P = P^1 \times ... \times P^k</math>, где каждый политоп <math>P^l \;</math> имеет ширину <math>\rho^l \;</math> (очевидно, что <math>\rho \le \sum_l \rho^l</math>), и имеется отдельный оракул PACK_ORACLE для каждого <math>P^l, A^l \;</math>, тогда рандомизация может использоваться для потенциального ускорения работы алгоритма. Обозначив за | Для случая, когда P записывается в виде произведения политопов меньшей размерности, т. е. <math>P = P^1 \times ... \times P^k</math>, где каждый политоп <math>P^l \;</math> имеет ширину <math>\rho^l \;</math> (очевидно, что <math>\rho \le \sum_l \rho^l</math>), и имеется отдельный оракул PACK_ORACLE для каждого <math>P^l, A^l \;</math>, тогда рандомизация может использоваться для потенциального ускорения работы алгоритма. Обозначив за PACK_ORACLE<math>_l</math> оракул для <math>P^l, A^l \;</math>, получаем следующий результат: | ||
Теорема 2. Для 0 < | '''Теорема 2. Для <math>0 < \varepsilon \le 1 \;</math> существует рандомизированная <math>\varepsilon \;</math>-ослабленная разрешающая процедура для дробно-линейной задачи упаковки, предположительно использующая <math>O(\varepsilon^{-2} (\sum_l \rho^l) \; log(m \varepsilon^{-1}) + k \; log(\rho \varepsilon^{-1}))</math> вызовов оракула PACK_ORACLE<math>_l</math> для некоторого <math>l \in \{ 1, ..., k \}</math> (возможно, <math>l \;</math> различно для каждого вызова) плюс время, необходимое для вычисления <math>\sum_l A^l x^l</math> для текущего компонента итерации <math>x = (x^1, x^2, ... x^k) \;</math> между последовательными вызовами.''' | ||
Теорема 2 также выполняется для задачи RELAXED PACKING, если заменить p на p, а PACK_ORACLE – на REL_PACK_ORACLE. | Теорема 2 также выполняется для задачи RELAXED PACKING, если заменить p на p, а PACK_ORACLE – на REL_PACK_ORACLE. |
правка