Жадные алгоритмы покрытия множества: различия между версиями

Перейти к навигации Перейти к поиску
м
Строка 60: Строка 60:




В варианте «Максимальное k-покрытие» требуется, чтобы набор множеств, суммарный вес которых не превышает k, покрывал максимально возможное количество элементов. Для этого варианта существует алгоритм (1 1/e)-аппроксимации ([15], задача 2.18) (см. [7] для варианта множеств с неоднородными весами).
В варианте «Максимальное k-покрытие» требуется, чтобы набор множеств, суммарный вес которых не превышает k, покрывал максимально возможное количество элементов. Для этого варианта существует алгоритм (1 - 1/e)-аппроксимации ([15], задача 2.18) (см. [7] для варианта множеств с неоднородными весами).




Широкое обсуждение применения жадных методов для аппроксимации задачи комбинаторной оптимизации можно найти в главе 4 работы [5]).
Широкое обсуждение применения жадных методов для аппроксимации задачи комбинаторной оптимизации можно найти в главе 4 работы [5].




Наконец, в свете весьма правдоподобных теоретико-сложностных допущений, коэффициент аппроксимации ln n является практически лучшим для любого алгоритма с полиномиальным временем выполнения [3, 4].
Наконец, в свете весьма правдоподобных теоретико-сложностных допущений, коэффициент аппроксимации ln n является практически лучшим возможным для любого алгоритма с полиномиальным временем выполнения [3, 4].


== Применение ==
== Применение ==
4551

правка

Навигация