4511
правок
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
(не показано 10 промежуточных версий этого же участника) | |||
Строка 7: | Строка 7: | ||
'''Определение 1 (система метрических задач)'''. Зафиксируем метрическое пространство <math>(X, d_X) \;</math>. Пусть <math>\Gamma = \{ (r_x)_{x \in X}: \forall x \in X, r(x) \in [0, \infty] \}</math> – множество всех возможных задач. Обозначим за <math>T \subset \Gamma \;</math> подмножество задач, называемых ''допустимыми''. | '''Определение 1 (система метрических задач)'''. Зафиксируем метрическое пространство <math>(X, d_X) \;</math>. Пусть <math>\Gamma = \{ (r_x)_{x \in X}: \forall x \in X, r(x) \in [0, \infty] \}</math> – множество всех возможных задач. Обозначим за <math>T \subset \Gamma \;</math> подмножество задач, называемых ''допустимыми''. | ||
<math>MTS((X, d_X), T, a_0 \in X) \;</math>: | <math>MTS((X, d_X), T, a_0 \in X) \;</math>: | ||
Строка 20: | Строка 19: | ||
Если X конечно, а последовательность задач <math>\tau \in T^* \;</math> задана заранее, динамический алгоритм может вычислить оптимальное решение, используя память размером <math>O(|X|) \;</math> и время <math>О(| \tau | \cdot |X|) \;</math>. | Если X конечно, а последовательность задач <math>\tau \in T^* \;</math> задана заранее, динамический алгоритм может вычислить оптимальное решение, используя память размером <math>O(|X|) \;</math> и время <math>О(| \tau | \cdot |X|) \;</math>. Однако задача MTS интереснее всего в онлайновом режиме, в котором система должна реагировать на задачу <math>\tau_i \;</math> переходом в состояние <math>a_i \in X \;</math>, не зная будущих задач из <math>\tau \;</math>. Более формально: | ||
'''Определение 2 (онлайн-алгоритмы для MTS)'''. Детерминированный алгоритм решения задачи <math>MTS((X, d_X), T, a_0) \;</math> представляет собой отображение <math>S: T^* \to X^* \;</math>, такое, что для любого <math>\tau \in T \;</math> имеет место <math>|S(\tau)| = |\tau| \;</math> . Детерминированный алгоритм <math>S: T^* \to X^* \;</math> называется ''онлайновым'', если для любых <math>\tau, \sigma \in T^* \;</math> существует <math>a \in X^*, |a| = | \sigma | \;</math>, такое, что <math>S(\tau \circ \sigma) = S(\tau) \circ | '''Определение 2 (онлайн-алгоритмы для MTS)'''. Детерминированный алгоритм решения задачи <math>MTS((X, d_X), T, a_0) \;</math> представляет собой отображение <math>S: T^* \to X^* \;</math>, такое, что для любого <math>\tau \in T \;</math> имеет место <math>|S(\tau)| = |\tau| \;</math> . Детерминированный алгоритм <math>S: T^* \to X^* \;</math> называется ''онлайновым'', если для любых <math>\tau, \sigma \in T^* \;</math> существует <math>a \in X^*, |a| = | \sigma | \;</math>, такое, что <math>S(\tau \circ \sigma) = S(\tau) \circ a \;</math>. Рандомизированный онлайн-алгоритм представляет собой вероятностное распределение над детерминированными онлайн-алгоритмами. | ||
Строка 39: | Строка 38: | ||
В отличие от детерминированного случая для рандомизированных алгоритмов решения общей задачи MTS пока не сложилось полного понимания, и для общего случая неизвестны точные границы, подобные приведенным в теореме 1. | В отличие от детерминированного случая, для рандомизированных алгоритмов решения общей задачи MTS пока не сложилось полного понимания, и для общего случая неизвестны точные границы, подобные приведенным в теореме 1. | ||
Строка 45: | Строка 44: | ||
Доказательство лучших известных на данный момент границ для n-точечной метрики общего вида производится в два этапа. Вначале заданная метрика аппроксимируется ''ультраметрикой'', а затем доказывается | Доказательство лучших известных на данный момент границ для n-точечной метрики общего вида производится в два этапа. Вначале заданная метрика аппроксимируется ''ультраметрикой'', а затем доказывается граница коэффициента конкурентоспособности общей задачи MTS на ультраметрике. | ||
Строка 54: | Строка 53: | ||
Фиат и Мендель [9] предложили O(log n log log n)-конкурентный алгоритм для n-точечных ультраметрик, улучшающий (и использующий) результат Бартала, Блюма, Берча и Томкинса [1], которые представили первый | Фиат и Мендель [9] предложили O(log n log log n)-конкурентный алгоритм для n-точечных ультраметрик, улучшающий (и использующий) результат Бартала, Блюма, Берча и Томкинса [1], которые представили первый полилогарифмически- (или даже сублинейно)-конкурентный рандомизированный алгоритм решения общей задачи MTS на метрическом пространстве общего вида. | ||
Строка 60: | Строка 59: | ||
Компонент аппроксимации метрики, упоминающийся в доказательстве теоремы 4, называется подмножествами Рамсея. Первыми в этом контексте его использовали Карлофф, Рабани и Равид, впоследствии результат улучшили Блюм, Карлофф, Рабани и Сакс, а также Бартал, Боллобас и Мендель [ ]. Строгий результат для подмножеств Рамсея доказали Бартал, Линиал, Мендель и Наор. Более простое (и строгое) доказательство можно найти в работе [12]. | Компонент аппроксимации метрики, упоминающийся в доказательстве теоремы 4, называется ''подмножествами Рамсея''. Первыми в этом контексте его использовали Карлофф, Рабани и Равид, впоследствии результат улучшили Блюм, Карлофф, Рабани и Сакс, а также Бартал, Боллобас и Мендель [2]. Строгий результат для подмножеств Рамсея доказали Бартал, Линиал, Мендель и Наор. Более простое (и строгое) доказательство можно найти в работе [12]. | ||
Нижняя граница | Нижняя граница <math>\Omega (log \; n /log \; log \; n)</math> коэффициента конкурентоспособности любого рандомизированного алгоритма решения общей задачи MTS на n-точечной ультраметрике была доказана в [2], улучшив тем самым предыдущие результаты Карлоффа, Рабани и Равида, а также Блюма, Карлоффа, Рабани и Сакса. | ||
Строка 69: | Строка 68: | ||
Теорема 5 [6]. Задача определения коэффициента конкурентоспособности для данного экземпляра задачи MTS ((X, | '''Теорема 5 [6]. Задача определения коэффициента конкурентоспособности для данного экземпляра задачи <math>MTS ((X, d_X), a_0 \in X, T) \;</math> является [[PSPACE-hard problem|PSPACE-трудной]], даже если метрика <math>d_X \;</math> является униформной. С другой стороны, если метрика <math>d_X \;</math> является униформной, существует детерминированный онлайн-алгоритм с полиномиальным временем выполнения для решения задачи <math>MTS((X, d_X), a_0 \in X, T) \;</math>, коэффициент конкурентоспособности которого в O(log |X|) раз превышает детерминированный коэффициент конкурентоспособности алгоритма для <math>MTS((X, d_X), a_0, T) \;</math>. Предполагается, что экземпляр <math>((X, d_X), a_0, T) \;</math> задан явным образом.''' | ||
== Применение == | == Применение == | ||
Системы метрических задач были введены в качестве абстракции для онлайн-вычислений, они обобщают многие конкретные задачи онлайн-вычислений, такие как подкачка, взвешенное кэширование, k-серверная задача и обновление списков. Исторически | Системы метрических задач были введены в качестве абстракции для онлайн-вычислений, они обобщают многие конкретные задачи онлайн-вычислений, такие как подкачка, взвешенное кэширование, k-серверная задача и обновление списков. Исторически они служили индикаторами для общей теории конкурентных онлайн-вычислений. | ||
Основным техническим вкладом модели MTS является разработка алгоритма рабочей функции, используемого для доказательства верхней границы в теореме 1. Кутсупиас и Пападимитриу впоследствии проанализировали этот алгоритм в контексте k-серверной задачи и показали, что он является 2k-1-конкурентным. Кроме того, хотя модель MTS служит обобщением k-серверной задачи, общая задача MTS на n-точечной метрике по существу эквивалентна (n - 1)-серверной задаче на той же метрике [2]. Следовательно, из нижних границ коэффициента конкурентоспособности общей задачи MTS можно получить нижние границы для k-серверной задачи, а алгоритмы решения общей задачи MTS могут стать первым шагом к разработке алгоритма для решения k-серверной задачи, как и в случае с алгоритмом рабочей функции. | Основным техническим вкладом модели MTS является разработка алгоритма рабочей функции, используемого для доказательства верхней границы в теореме 1. Кутсупиас и Пападимитриу впоследствии проанализировали этот алгоритм в контексте k-серверной задачи и показали, что он является (2k - 1)-конкурентным. Кроме того, хотя модель MTS служит обобщением k-серверной задачи, общая задача MTS на n-точечной метрике по существу эквивалентна (n - 1)-серверной задаче на той же метрике [2]. Следовательно, из нижних границ коэффициента конкурентоспособности общей задачи MTS можно получить нижние границы для k-серверной задачи, а алгоритмы решения общей задачи MTS могут стать первым шагом к разработке алгоритма для решения k-серверной задачи, как и в случае с алгоритмом рабочей функции. | ||
Строка 81: | Строка 80: | ||
== Открытые вопросы == | == Открытые вопросы == | ||
По-прежнему сохраняется очевидный разрыв между верхней и нижней границами рандомизированного коэффициента конкурентоспособности общей задачи MTS над конечными метриками общего вида. Известно, что, в отличие от детерминированного случая, рандомизированный коэффициент конкурентоспособности ''не является константным'' над всеми метрическими пространствами того же размера. Однако в случаях, когда известны точные границы, коэффициент конкурентоспособности равен <math>\Theta(log \; n)</math>. Из этого можно сделать очевидный вывод, что для любой n-точечной метрики рандомизированный коэффициент конкурентоспособности равен <math>\Theta(log \; n)</math>. Вероятно, самыми простыми классами метрических пространств, для которых неизвестна верхняя граница рандомизированного коэффициента конкурентоспособности лучше <math>O(log^2 n) \;</math>, являются пути и циклы. | |||
Кроме того, не хватает «средней теории» для задачи MTS. С одной стороны, общая задача MTS достаточно хорошо изучена. С другой же стороны, такие специализированные задачи MTS, как обновление списков, детерминированные k-серверные алгоритмы и детерминированное взвешенное кэширование, также хорошо изучены и имеют намного лучшие коэффициенты конкурентоспособности по сравнению с соответствующей общей задачей. На данный момент недостает «промежуточных» моделей MTS, которые могли бы объяснить низкие коэффициенты конкурентоспособности для некоторых конкретных онлайн-задач, упомянутых выше. | |||
Хотелось бы усилить формулировку теоремы 5 и получить детерминированный онлайн-алгоритм с полиномиальным временем выполнения, коэффициент конкурентоспособности которого для любого экземпляра задачи MTS на ''любом'' n-точечном метрическом пространстве не более чем в poly-log(n) раз превышает детерминированный коэффициент конкурентоспособности для этого экземпляра. | |||
== См. также == | |||
* [[Алгоритм DC-дерева для k серверов на деревьях]] | |||
* [[Аппроксимация метрических пространств древесными метриками]] | |||
* [[Онлайн-алгоритм обновления списков]] | |||
* [[Онлайн-алгоритм подкачки и кэширования]] | |||
* [[Подкачка страниц]] | |||
* [[Задача об аренде лыж]] | |||
* [[Алгоритм рабочей функции для k серверов]] | |||
== Литература == | |||
1. Bartal, Y., Blum, A., Burch, C., Tomkins, A.: A polylog()-competitive algorithm for metrical task systems. In: Proceedings of the 29th annual ACM Symposium on the Theory of Computing, pp. 711-719. ACM, New York (1997) | |||
2. Bartal, Y., Bollobas, B., Mendel, M.: Ramsey-type theorems for metric spaces with applications to online problems. J. Comput. Syst.Sci. 72,890-921 (2006) | |||
3. Bartal, Y., Mendel, M.: Multiembedding of metric spaces. SIAM J. Comput. 34, 248-259 (2004) | |||
4. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge University Press, Cambridge, UK (1998) | |||
5. Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task system. J. ACM 39, 745-763 (1992) | |||
6. Burley, W.R., Irani, S.: On algorithm design for metrical task systems. Algorithmica 18,461^85 (1997) | |||
7. Chrobak, M., Larmore, L.L.: Metrical task systems, the server problem and the work function algorithm. In: Fiat, A., Woeginger, G J. (eds.) Online Algorithms. The State of the Art. LNCS, vol. 1442, ch.4, pp. 74-96. Springer, London (1998) | |||
8. Fakcharoenphol, J., Rao, S.,Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69,485-497(2004) | |||
9. Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and applications. SIAM J. Comput. 32, 1403-1422 (2003) | |||
10. Irani, S., Seiden, S.S.: Randomized algorithms for metrical task systems. Theor. Comput. Sci. 194,163-182 (1998) | |||
11. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server problems. J. Algorithms 11,208-230 (1990) | |||
12. Mendel, M., Naor, A.: Ramsey partitions and proximity data structures. J. Eur. Math. Soc. 9(2), 253-275 (2007) |
правок