4511
правок
Irina (обсуждение | вклад) м (→Применение) |
Irina (обсуждение | вклад) м (→Применение) |
||
Строка 113: | Строка 113: | ||
Еще одной областью применения является управление топологией. Для эффективного управления децентрализованными беспроводными сетями необходимо строить и поддерживать подмножества топологии сети. Соответствующий раздел называется управлением топологией. Остов представляет собой подмножество топологии сети, в котором минимальная полная стоимость пути между любыми двумя вершинами (отражающая, например, расстояние или энергопотребление) только в константное число раз больше минимальной полной стоимости в исходной топологии сети. Таким образом, остовы оказываются подходящими кандидатами на роль виртуальных магистралей. Такие геометрические структуры, как евклидовы минимальные остовные деревья, графы относительных окрестностей, графы Гэбриэла, триангуляции Делоне, графы Яо и другие, широко используются в качестве компонентов при построении остовов [1, 5, 13]. Применение знаний о критических диапазонах | Еще одной областью применения является управление топологией. Для эффективного управления децентрализованными беспроводными сетями необходимо строить и поддерживать подмножества топологии сети. Соответствующий раздел называется управлением топологией. Остов представляет собой подмножество топологии сети, в котором минимальная полная стоимость пути между любыми двумя вершинами (отражающая, например, расстояние или энергопотребление) только в константное число раз больше минимальной полной стоимости в исходной топологии сети. Таким образом, остовы оказываются подходящими кандидатами на роль виртуальных магистралей. Такие геометрические структуры, как евклидовы минимальные остовные деревья, графы относительных окрестностей, графы Гэбриэла, триангуляции Делоне, графы Яо и другие, широко используются в качестве компонентов при построении остовов [1, 5, 13]. Применение знаний о критических диапазонах позволяет снизить сложность разработки алгоритмов [3, 11]. | ||
== Открытые вопросы == | == Открытые вопросы == |
правок