4501
правка
Irina (обсуждение | вклад) м (→См. также) |
Irina (обсуждение | вклад) мНет описания правки |
||
Строка 7: | Строка 7: | ||
Рассмотрим граф G = (V, E). Множество C множества V называется [[доминирующее множество|доминирующим множеством]], если каждая вершина либо принадлежит к C, либо смежна с вершиной, принадлежащей к C. Если подграф, порожденный С, является связным, то C называется ''связным доминирующим множеством''. Связное доминирующее множество минимальной мощности называется ''минимальным связным доминирующим множеством'' (МСДМ). Вычисление МСДМ представляет собой NP-полную задачу, не имеющую аппроксимации с полиномиальным временем исполнения и коэффициентом эффективности <math>\rho\ H(\Delta\ )</math> для <math>\rho\ < 1</math>, за исключением случая <math>NP \subseteq DTIME(n^{O(lnln n)})</math>, где H – гармоническая функция, а <math>\Delta\ </math> – максимальная степень исходного графа [10]. | Рассмотрим граф G = (V, E). Множество C множества V называется [[доминирующее множество|доминирующим множеством]], если каждая вершина либо принадлежит к C, либо смежна с вершиной, принадлежащей к C. Если подграф, порожденный С, является связным, то C называется ''связным доминирующим множеством''. Связное доминирующее множество минимальной мощности называется ''минимальным связным доминирующим множеством'' (МСДМ). Вычисление МСДМ представляет собой NP-полную задачу, не имеющую аппроксимации с полиномиальным временем исполнения и коэффициентом эффективности <math>\rho\ H(\Delta\ )</math> для <math>\rho\ < 1</math>, за исключением случая <math>NP \subseteq DTIME(n^{O(lnln n)})</math>, где H – гармоническая функция, а <math>\Delta\ </math> – максимальная степень исходного графа [10]. | ||
Единичным диском называется диск с радиусом, равным единице. [[Граф единичных | Единичным диском называется диск с радиусом, равным единице. [[Граф единичных кругов]] ассоциирован с множеством единичных кругов на евклидовой плоскости. Каждая вершина является центром единичного диска. Между двумя вершинами u и v существует ребро в том и только том случае, если <math>|uv| \le 1</math>, где <math>|uv| \; </math> – евклидово расстояние между u и v. Это означает, что две вершины u и v связаны ребром в том и только том случае, если диск вершины u покрывает v, а диск v покрывает u. | ||
Вычисление МСДМ для графа единичных | Вычисление МСДМ для графа единичных кругов также является NP-полной задачей; однако можно построить неплохую аппроксимацию для ее решения; Чен и коллеги [5] представили для нее схему аппроксимации с полиномиальным временем исполнения. | ||
== История вопроса == | == История вопроса == | ||
Строка 15: | Строка 15: | ||
Задача нахождения связного доминирующего множества исследовалась в теории графов много лет [22]. В последнее время ее актуальность значительно выросла в связи с применением в области беспроводных сетей, а именно – для построения виртуальных магистралей [4]. Гуха и Хуллер [10] предложили двухступенчатую схему «жадной» аппроксимации для нахождения минимального связного доминирующего множества в графах общего вида и показали, что ее коэффициент эффективности равен <math>3 + ln \Delta\ </math>, где <math>\Delta\ </math> – максимальная степень вершины в графе. Построению одноступенчатого жадного алгоритма подобной эффективности мешает трудность нахождения субмодулярной гармонической функции. Руан и коллеги [21] успешно разработали одноступенчатый алгоритм жадной аппроксимации с лучшим коэффициентом эффективности, <math>c + ln \Delta\ </math>, для любого c > 2. Дю и коллеги [6] показали, что существует аппроксимация с полиномиальным временем исполнения и коэффициентом эффективности <math>a(1 + ln \Delta\ )</math> для любого <math>a > 1 \; </math>. Важность этих работ заключается в том, что используемые в жадном алгоритме гармонические функции не являются субмодулярными. | Задача нахождения связного доминирующего множества исследовалась в теории графов много лет [22]. В последнее время ее актуальность значительно выросла в связи с применением в области беспроводных сетей, а именно – для построения виртуальных магистралей [4]. Гуха и Хуллер [10] предложили двухступенчатую схему «жадной» аппроксимации для нахождения минимального связного доминирующего множества в графах общего вида и показали, что ее коэффициент эффективности равен <math>3 + ln \Delta\ </math>, где <math>\Delta\ </math> – максимальная степень вершины в графе. Построению одноступенчатого жадного алгоритма подобной эффективности мешает трудность нахождения субмодулярной гармонической функции. Руан и коллеги [21] успешно разработали одноступенчатый алгоритм жадной аппроксимации с лучшим коэффициентом эффективности, <math>c + ln \Delta\ </math>, для любого c > 2. Дю и коллеги [6] показали, что существует аппроксимация с полиномиальным временем исполнения и коэффициентом эффективности <math>a(1 + ln \Delta\ )</math> для любого <math>a > 1 \; </math>. Важность этих работ заключается в том, что используемые в жадном алгоритме гармонические функции не являются субмодулярными. | ||
Гуха и Хуллер [10] привели доказательство отрицательного результата, заключающегося в следующем: не существует аппроксимации с полиномиальным временем исполнения и коэффициентом эффективности <math>\rho\ ln \Delta\ </math> для <math>\rho\ < 1</math>, за исключением случая <math>NP \subseteq DTIME(n^{O(lnln n)})</math>. Как показано в [8], доминирующие множества не поддаются произвольно качественной аппроксимации, за исключением случаев, когда P почти равно NP. Эти результаты переносят фокус внимания с графов общего вида на графы единичных | Гуха и Хуллер [10] привели доказательство отрицательного результата, заключающегося в следующем: не существует аппроксимации с полиномиальным временем исполнения и коэффициентом эффективности <math>\rho\ ln \Delta\ </math> для <math>\rho\ < 1</math>, за исключением случая <math>NP \subseteq DTIME(n^{O(lnln n)})</math>. Как показано в [8], доминирующие множества не поддаются произвольно качественной аппроксимации, за исключением случаев, когда P почти равно NP. Эти результаты переносят фокус внимания с графов общего вида на графы единичных кругов, поскольку граф единичных кругов представляет собой базовую модель для беспроводных сенсорных сетей, и для графов единичных кругов построение МСДМ имеет аппроксимацию с полиномиальным временем исполнения и константным коэффициентом эффективности. Хотя этот константный коэффициент время от времени удается улучшить [1, 2, 19, 24], Чен и коллеги [5] поставили точку в этом вопросе, доказав существование схемы аппроксимации с полиномиальным временем исполнения (PTAS) для графов единичных кругов. Это значит, что теоретически коэффициент эффективности для алгоритма аппроксимации с полиномиальным временем исполнения может оказаться не выше <math>1 + \varepsilon\ </math> для любого положительного <math>\varepsilon\ </math>. | ||
Дубхаши и коллеги [7] показали, что после построения доминирующего множества можно легко вычислить связное доминирующее множество при помощи распределенного алгоритма. Самое полное изложение результатов вычисления доминирующих множеств приведено в [18]. В частности, в этой работе простая константная аппроксимация доминирующих множеств графами единичных | Дубхаши и коллеги [7] показали, что после построения доминирующего множества можно легко вычислить связное доминирующее множество при помощи распределенного алгоритма. Самое полное изложение результатов вычисления доминирующих множеств приведено в [18]. В частности, в этой работе простая константная аппроксимация доминирующих множеств графами единичных кругов. Аппроксимация с константным коэффициентом (связных) доминирующих множеств с минимальными весами для графов единичных кругов была исследована в [3]. Схема аппроксимации с полиномиальным временем исполнения для задачи вычисления минимального доминирующего множества для графов единичных кругов была предложена в [20]. Кун и коллеги [14] доказали, что максимальное независимое множество (и, следовательно, доминирующее множество) можно вычислить за асимптотически оптимальное время O(log n) для графов единичных кругов и крупного класса ограниченных графов независимости. Люби [17] предложил элегантный локальный алгоритм для вычисления максимального независимого множества для графов общего вида с временем исполнения O(log n). Джиа и коллеги [11] предложили быструю распределенную схему аппроксимации для вычисления доминирующего множества для графов общего вида с временем исполнения O(log n). Первый распределенный алгоритм для вычисления доминирующих множеств за константное время с нетривиальным коэффициентом аппроксимации для графов общего вида был приведен в [15]. Соответствующая нижняя граница <math>\Omega\ (log n) \; </math> считается классическим результатом для распределенного вычисления [16]. Получить схему аппроксимации с полиномиальным временем исполнения для графов единичных кругов можно при помощи распределенного алгоритма [13]. Самый быстрый детерминистский распределенный алгоритм для вычисления доминирующих множеств на графах единичных кругов был приведен в [12], а самый быстрый рандомизированный распределенный алгоритм для них же – в [9]. | ||
== Основные результаты == | == Основные результаты == | ||
Строка 23: | Строка 23: | ||
Построение схемы аппроксимации с полиномиальным временем исполнения для минимального связного доминирующего множества (МСДМ) базируется на факте существования схемы с полиномиальным временем исполнения и константным коэффициентом эффективности. Этот факт довольно легко обнаружить. Прежде всего, заметим, что единичный диск содержит не более пяти независимых вершин [2]. Из этого следует, что любое максимальное независимое множество имеет размер не более 1 + 4opt, где opt – размер МСДМ. Кроме того, каждое максимальное независимое множество является доминирующим множеством, и можно легко построить максимальное независимое множество с остовным деревом, состоящим из всех ребер длины 2. Все вершины этого остовного дерева образуют связное доминирующее множество размером не более 1 + 8opt. Благодаря улучшению верхней границы размера максимального независимого множества [25] и возможности соединения максимальных независимых множеств [19] значение константного коэффициента было улучшено до 6,8 для распределенного реализации алгоритма. | Построение схемы аппроксимации с полиномиальным временем исполнения для минимального связного доминирующего множества (МСДМ) базируется на факте существования схемы с полиномиальным временем исполнения и константным коэффициентом эффективности. Этот факт довольно легко обнаружить. Прежде всего, заметим, что единичный диск содержит не более пяти независимых вершин [2]. Из этого следует, что любое максимальное независимое множество имеет размер не более 1 + 4opt, где opt – размер МСДМ. Кроме того, каждое максимальное независимое множество является доминирующим множеством, и можно легко построить максимальное независимое множество с остовным деревом, состоящим из всех ребер длины 2. Все вершины этого остовного дерева образуют связное доминирующее множество размером не более 1 + 8opt. Благодаря улучшению верхней границы размера максимального независимого множества [25] и возможности соединения максимальных независимых множеств [19] значение константного коэффициента было улучшено до 6,8 для распределенного реализации алгоритма. | ||
В этом построении главным образом используются техники неадаптивного разбиения и сдвига. В общем случае ход действий примерно таков: вначале квадрат, содержащий все вершины исходного графа единичных | В этом построении главным образом используются техники неадаптивного разбиения и сдвига. В общем случае ход действий примерно таков: вначале квадрат, содержащий все вершины исходного графа единичных кругов, разделяется на решетку из небольших ячеек. Каждая из этих ячеек далее разбивается на две области – центральную и граничную. Центральная область состоит из точек, находящихся на расстоянии h от границы ячейки. Граничная область состоит из точек, расстояние от которых до границы ячейки составляет не более h + 1. Таким образом, эти области перекрываются. После этого минимальное объединение связных доминирующих множеств вычисляется в каждой ячейке для связных компонент центральной области ячейки. Основная задача состоит в том, чтобы доказать, что объединение всех таких минимальных объединений не превышает минимального связного доминирующего множества для всего графа. Для вершин, не принадлежащих к центральным областям, для вычисления доминирующего множества используется часть 8-аппроксимации, лежащая в граничных областях. Вместе с упоминавшимся ранее объединением она образует связное доминирующее множество для всего исходного графа единичных кругов. Перемещая решетку для получения разбиения по разным координатам, можно получить разбиение с граничной областью, имеющей очень малую верхнюю границу. | ||
Приведем более детальное описание процесса построения. | Приведем более детальное описание процесса построения. | ||
Пусть дан исходный связный граф единичных | Пусть дан исходный связный граф единичных кругов G = (V, E), располагающийся в квадрате <math>Q = \big\{ (x, y) | 0 \le x \le q, 0 \le y \le q \big\}\ </math>, где <math>q \le |V|</math>. Для построения приближенного решения с коэффициентом эффективности <math>1 + \varepsilon\ </math> для <math>\varepsilon\ > 0</math> выберем целое число <math>m = O((1/ \varepsilon\ )ln(1/ \varepsilon\ ))</math>. Пусть <math>p = \mathcal{b} q/m \mathcal{c} + 1</math>. Рассмотрим квадрат <math>\bar{Q} = \big\{ (x, y) | - m \le x \le mp, - m \le y \le mp \big\} </math>. Разобьем <math>\bar{Q}</math> на <math>(p + 1) \times (p + 1)</math> решеток таким образом, что каждая ячейка представляет собой квадрат <math>m \times m</math>, за исключением верхней и правой границ; следовательно, никакие две ячейки не перекрываются друг с другом. Обозначим это разбиение квадрата <math>\bar{Q}</math> как P(0) (см. рис.). В общем случае разбиение P(a) получается из P(0) в результате сдвига нижнего левого угла Q из точки (—m,—m) в точку (—m + a,—m+ a). Заметим, что в результате сдвига из P(0) в P(a) для <math>0 \le a \le m</math> квадрат Q оказывается покрыт разбиением. | ||
[[Файл:CDS_1.jpg]] | [[Файл:CDS_1.jpg]] | ||
Строка 104: | Строка 104: | ||
'''Теорема 1.''' Существует <math>(1 + \varepsilon\ )</math>-аппроксимация для построения минимального связного доминирующего множества в связных графах единичных | '''Теорема 1.''' Существует <math>(1 + \varepsilon\ )</math>-аппроксимация для построения минимального связного доминирующего множества в связных графах единичных кругов, время исполнения которой составляет <math>n^{O((1/ \varepsilon\ )log(1/ \varepsilon\ )^2)}</math>. | ||
== Применение == | == Применение == | ||
Важной областью применения связных доминирующих множеств является построение виртуальных магистралей для беспроводных сетей, особенно для беспроводных сенсорных сетей [4]. Топология беспроводной сенсорной сети часто представляет собой граф единичных | Важной областью применения связных доминирующих множеств является построение виртуальных магистралей для беспроводных сетей, особенно для беспроводных сенсорных сетей [4]. Топология беспроводной сенсорной сети часто представляет собой граф единичных кругов. | ||
== Открытые вопросы == | == Открытые вопросы == | ||
В общем случае топология беспроводной сенсорной сети представляет собой [[граф | В общем случае топология беспроводной сенсорной сети представляет собой [[граф кругов]]; иначе говоря, каждая вершина ассоциируется с диском. Разные диски могут иметь различный размер. Ребро из вершины u в вершину v существует в том и только том случае, если диск u покрывает v. Виртуальная магистраль в графах кругов представляет собой подмножество вершин, порождающее [[сильно связный подграф]], такой, что каждая вершина, не принадлежащая к подмножеству, имеет входящее ребро из вершины подмножества, а также исходящее ребро, ведущее к вершине подмножества. Такая виртуальная магистраль может рассматриваться как связное доминирующее множество в графе кругов. Вопрос о том, существует ли аппроксимация с полиномиальным временем исполнения и константным коэффициентом эффективности, до сих пор остается открытым. Тай и коллеги [23] достигли в этом отношении определенных успехов. | ||
== См. также == | == См. также == |
правка