Остовное дерево с максимальным количеством листьев: различия между версиями

Перейти к навигации Перейти к поиску
мНет описания правки
 
(не показана 1 промежуточная версия 1 участника)
Строка 43: Строка 43:
(в) Градиенты и правила преобразования для эвристик локального поиска.
(в) Градиенты и правила преобразования для эвристик локального поиска.


(г) Алгоритмы аппроксимации с полиномиальным временем выполнения и границы эффективности, доказанные систематическим образом.
(г) Аппроксимационные алгоритмы с полиномиальным временем выполнения и границы эффективности, доказанные систематическим образом.


(д) Структура, используемая для решения других задач.
(д) Структура, используемая для решения других задач.
Строка 107: Строка 107:




'''Цель (г): алгоритмы аппроксимации с полиномиальным временем выполнения'''
'''Цель (г): аппроксимационные алгоритмы с полиномиальным временем выполнения'''


Теория использования экстремальных структур с полиномиальным временем выполнения напрямую приводит к получению алгоритма аппроксимации ОДМЛ с константным множителем и полиномиальным временем выполнения. Вначале выполним редукцию G при помощи правил кернелизации. Правила редукции сохраняют параметры аппроксимации. Возьмем любое дерево T (не обязательно остовное) в графе G. Если выполняются все утверждения касательно структуры, тогда (согласно рассуждениям граничной леммы) дерево T должно иметь не менее n/c листьев для c = 3,75. Таким образом, восстановив T с учетом произведенной редукции, получим c-аппроксимацию.
Теория использования экстремальных структур с полиномиальным временем выполнения напрямую приводит к получению аппроксимационного алгоритма ОДМЛ с константным множителем и полиномиальным временем выполнения. Вначале выполним редукцию G при помощи правил кернелизации. Правила редукции сохраняют параметры аппроксимации. Возьмем любое дерево T (не обязательно остовное) в графе G. Если выполняются все утверждения касательно структуры, тогда (согласно рассуждениям граничной леммы) дерево T должно иметь не менее n/c листьев для c = 3,75. Таким образом, восстановив T с учетом произведенной редукции, получим c-аппроксимацию.




Строка 196: Строка 196:


17. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with the maximum number of leaves. In: Proceedings of the 6th Annual European Symposium on Algorithms (ESA'98). Lecture Notes in Computer Science, vol. 1461, pp. 441-452. Springer, Berlin (1998)
17. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with the maximum number of leaves. In: Proceedings of the 6th Annual European Symposium on Algorithms (ESA'98). Lecture Notes in Computer Science, vol. 1461, pp. 441-452. Springer, Berlin (1998)
[[Категория: Совместное определение связанных терминов]]

Навигация