Остовное дерево с максимальным количеством листьев: различия между версиями

Перейти к навигации Перейти к поиску
Строка 98: Строка 98:
'''Цель (б): предварительная обработка с полиномиальным временем выполнения и подпрограммы редукции данных'''
'''Цель (б): предварительная обработка с полиномиальным временем выполнения и подпрограммы редукции данных'''


Ниже приводится пример таблицы, используемой для отслеживания каждого возможного состояния границы для возможного решения. Можно привести примеры, демонстрирующие исключительно успешное каскадное применение правил редукции данных к реальным распределениям данных и описывающие разнообразие математических феноменов, относящихся к правилам редукции. Например, некоторые правила редукции – такие как правило разложения на составляющие Клейтмана-Веста для задачи ОДМЛ (рис. 2) – имеют фиксированный «размер границы» (в данном случае равный 2), тогда как правила редукции типа «корона» не имеют такового.
Ниже приводится пример таблицы, используемой для отслеживания каждого возможного состояния границы для возможного решения. Можно привести примеры, демонстрирующие исключительно успешное каскадное применение правил редукции данных к реальным распределениям данных и описывающие разнообразие математических феноменов, относящихся к правилам редукции. Например, некоторые правила редукции – такие как ''правило разложения на составляющие Клейтмана-Веста'' для задачи ОДМЛ (рис. 2) – имеют фиксированный «размер границы» (в данном случае равный 2), тогда как правила редукции типа «корона» не имеют такового.




Строка 108: Строка 108:
'''Цель (г): алгоритмы аппроксимации с полиномиальным временем выполнения'''
'''Цель (г): алгоритмы аппроксимации с полиномиальным временем выполнения'''


Теория использования экстремальных структур с полиномиальным временем выполнения напрямую приводит к получению алгоритма аппроксимации ОДМЛ с константным множителем и полиномиальным временем выполнения. Вначале выполним редукцию G при помощи правил кернелизации. Правила редукции сохраняют параметры аппроксимации. Возьмем любое дерево T (не обязательно остовное) в G. Если выполняются все утверждения касательно структуры, тогда (согласно рассуждениям граничной леммы) дерево T должно иметь не менее n/c листьев для c = 3,75. Таким образом, восстановив T с учетом произведенной редукции, получим c-аппроксимацию.
Теория использования экстремальных структур с полиномиальным временем выполнения напрямую приводит к получению алгоритма аппроксимации ОДМЛ с константным множителем и полиномиальным временем выполнения. Вначале выполним редукцию G при помощи правил кернелизации. Правила редукции сохраняют параметры аппроксимации. Возьмем любое дерево T (не обязательно остовное) в графе G. Если выполняются все утверждения касательно структуры, тогда (согласно рассуждениям граничной леммы) дерево T должно иметь не менее n/c листьев для c = 3,75. Таким образом, восстановив T с учетом произведенной редукции, получим c-аппроксимацию.




Если по меньшей мере одно утверждение касательно структуры не выполняется, то дерево T можно улучшить, опираясь на один из индуктивных приоритетов. Заметим, что каждое утверждение доказано посредством рассуждения, которое можно интерпретировать как подпрограмму улучшения T с полиномиальным временем выполнения в случае противоречия утверждению.
Если по меньшей мере одно утверждение касательно структуры не выполняется, то дерево T можно улучшить, опираясь на один из индуктивных приоритетов. Заметим, что каждое утверждение доказывается посредством рассуждения, которое можно интерпретировать как подпрограмму улучшения T с полиномиальным временем выполнения в случае противоречия утверждению.




Последовательность этих действий можно применить к исходному дереву T (и его потомкам) только полиномиальное количество раз, определяемое списком индуктивных приоритетов, до того момента, как мы получим дерево V, для которого выполняются все утверждения касательно структуры. В этот момент мы должны получить решение с c-аппроксимацией.
Последовательность этих действий можно применить к исходному дереву T (и его потомкам) только полиномиальное количество раз, определяемое списком индуктивных приоритетов, до того момента, как мы получим дерево T', для которого выполняются все утверждения касательно структуры. В этот момент мы должны получить решение с c-аппроксимацией.




Строка 127: Строка 127:




Здесь используются следующие сокращения: TW – это древесная ширина дерева (TREEWIDTH), BW – ширина полосы (BANDWIDTH), VC – вершинное покрытие (VERTEX COVER), DS – доминирующее множество (DOMINATING SET), G – род (GENUS), а ML – максимальное количество листьев (MAX LEAF). Обозначение во второй строке и четвертом столбце говорит о том, существует ли FPT-алгоритм для решения задачи DOMINATING SET на графе G с шириной полосы не более k. Обозначение в четвертой строке и втором столбце говорит о том, что неизвестно, может ли задача BANDWIDTH быть оптимально решена FPT-алгоритмом, если параметром является граница числа доминирования входного графа.
Здесь используются следующие сокращения: TW – это древесная ширина дерева (TREEWIDTH), BW – ширина полосы (BANDWIDTH), VC – вершинное покрытие (VERTEX COVER), DS – доминирующее множество (DOMINATING SET), G – род (GENUS), а ML – максимальное количество листьев (MAX LEAF). Обозначение во второй строке и четвертом столбце говорит о том, что существует FPT-алгоритм для решения задачи DOMINATING SET на графе G с шириной полосы не более k. Обозначение в четвертой строке и втором столбце говорит о том, что неизвестно, может ли задача BANDWIDTH быть оптимально решена FPT-алгоритмом, если параметром является граница числа доминирования входного графа.


MAX LEAF применяется к последней строке таблицы. Для графов с максимальным количеством листьев, ограниченным k, максимальный размер независимого множества может быть вычислен за время <math>O^* (2,972^k) \;</math> на основе редукции ядра размером не более 7k. Использование результата решения одной задачи в качестве исходных данных для другой задачи оказывается весьма практичным.
MAX LEAF применяется к последней строке таблицы. Для графов с максимальным количеством листьев, ограниченным k, максимальный размер независимого множества может быть вычислен за время <math>O^* (2,972^k) \;</math> на основе редукции до ядра размером не более 7k. Использование результата решения одной задачи в качестве исходных данных для другой задачи оказывается весьма практичным.


== Применение ==
== Применение ==
4551

правка

Навигация