4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 98: | Строка 98: | ||
'''Цель (б): предварительная обработка с полиномиальным временем выполнения и подпрограммы редукции данных''' | '''Цель (б): предварительная обработка с полиномиальным временем выполнения и подпрограммы редукции данных''' | ||
Ниже приводится пример таблицы, используемой для отслеживания каждого возможного состояния границы для возможного решения. Можно привести примеры, демонстрирующие исключительно успешное каскадное применение правил редукции данных к реальным распределениям данных и описывающие разнообразие математических феноменов, относящихся к правилам редукции. Например, некоторые правила редукции – такие как правило разложения на составляющие Клейтмана-Веста для задачи ОДМЛ (рис. 2) – имеют фиксированный «размер границы» (в данном случае равный 2), тогда как правила редукции типа «корона» не имеют такового. | Ниже приводится пример таблицы, используемой для отслеживания каждого возможного состояния границы для возможного решения. Можно привести примеры, демонстрирующие исключительно успешное каскадное применение правил редукции данных к реальным распределениям данных и описывающие разнообразие математических феноменов, относящихся к правилам редукции. Например, некоторые правила редукции – такие как ''правило разложения на составляющие Клейтмана-Веста'' для задачи ОДМЛ (рис. 2) – имеют фиксированный «размер границы» (в данном случае равный 2), тогда как правила редукции типа «корона» не имеют такового. | ||
Строка 108: | Строка 108: | ||
'''Цель (г): алгоритмы аппроксимации с полиномиальным временем выполнения''' | '''Цель (г): алгоритмы аппроксимации с полиномиальным временем выполнения''' | ||
Теория использования экстремальных структур с полиномиальным временем выполнения напрямую приводит к получению алгоритма аппроксимации ОДМЛ с константным множителем и полиномиальным временем выполнения. Вначале выполним редукцию G при помощи правил кернелизации. Правила редукции сохраняют параметры аппроксимации. Возьмем любое дерево T (не обязательно остовное) в G. Если выполняются все утверждения касательно структуры, тогда (согласно рассуждениям граничной леммы) дерево T должно иметь не менее n/c листьев для c = 3,75. Таким образом, восстановив T с учетом произведенной редукции, получим c-аппроксимацию. | Теория использования экстремальных структур с полиномиальным временем выполнения напрямую приводит к получению алгоритма аппроксимации ОДМЛ с константным множителем и полиномиальным временем выполнения. Вначале выполним редукцию G при помощи правил кернелизации. Правила редукции сохраняют параметры аппроксимации. Возьмем любое дерево T (не обязательно остовное) в графе G. Если выполняются все утверждения касательно структуры, тогда (согласно рассуждениям граничной леммы) дерево T должно иметь не менее n/c листьев для c = 3,75. Таким образом, восстановив T с учетом произведенной редукции, получим c-аппроксимацию. | ||
Если по меньшей мере одно утверждение касательно структуры не выполняется, то дерево T можно улучшить, опираясь на один из индуктивных приоритетов. Заметим, что каждое утверждение | Если по меньшей мере одно утверждение касательно структуры не выполняется, то дерево T можно улучшить, опираясь на один из индуктивных приоритетов. Заметим, что каждое утверждение доказывается посредством рассуждения, которое можно интерпретировать как подпрограмму улучшения T с полиномиальным временем выполнения в случае противоречия утверждению. | ||
Последовательность этих действий можно применить к исходному дереву T (и его потомкам) только полиномиальное количество раз, определяемое списком индуктивных приоритетов, до того момента, как мы получим дерево | Последовательность этих действий можно применить к исходному дереву T (и его потомкам) только полиномиальное количество раз, определяемое списком индуктивных приоритетов, до того момента, как мы получим дерево T', для которого выполняются все утверждения касательно структуры. В этот момент мы должны получить решение с c-аппроксимацией. | ||
Строка 127: | Строка 127: | ||
Здесь используются следующие сокращения: TW – это древесная ширина дерева (TREEWIDTH), BW – ширина полосы (BANDWIDTH), VC – вершинное покрытие (VERTEX COVER), DS – доминирующее множество (DOMINATING SET), G – род (GENUS), а ML – максимальное количество листьев (MAX LEAF). Обозначение во второй строке и четвертом столбце говорит о том, существует | Здесь используются следующие сокращения: TW – это древесная ширина дерева (TREEWIDTH), BW – ширина полосы (BANDWIDTH), VC – вершинное покрытие (VERTEX COVER), DS – доминирующее множество (DOMINATING SET), G – род (GENUS), а ML – максимальное количество листьев (MAX LEAF). Обозначение во второй строке и четвертом столбце говорит о том, что существует FPT-алгоритм для решения задачи DOMINATING SET на графе G с шириной полосы не более k. Обозначение в четвертой строке и втором столбце говорит о том, что неизвестно, может ли задача BANDWIDTH быть оптимально решена FPT-алгоритмом, если параметром является граница числа доминирования входного графа. | ||
MAX LEAF применяется к последней строке таблицы. Для графов с максимальным количеством листьев, ограниченным k, максимальный размер независимого множества может быть вычислен за время <math>O^* (2,972^k) \;</math> на основе редукции ядра размером не более 7k. Использование результата решения одной задачи в качестве исходных данных для другой задачи оказывается весьма практичным. | MAX LEAF применяется к последней строке таблицы. Для графов с максимальным количеством листьев, ограниченным k, максимальный размер независимого множества может быть вычислен за время <math>O^* (2,972^k) \;</math> на основе редукции до ядра размером не более 7k. Использование результата решения одной задачи в качестве исходных данных для другой задачи оказывается весьма практичным. | ||
== Применение == | == Применение == |
правка