4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 29: | Строка 29: | ||
Вначале алгоритм 1 строит | Вначале алгоритм 1 строит максимальное независимое множество, используя классический жадный метод, в котором критерием выбора служит стоимость вершины. Затем для каждой вершины v, принадлежащей к максимальному независимому множеству, алгоритм запускает локальный жадный метод поиска покрытия множества на [[локальная окрестность|локальной окрестности]] <math>N_2(v) \;</math>, который находит некоторые вершины <math>(GRDY_v) \;</math>, покрывающие всех соседей v, доступных в результате одного перехода. Если полная стоимость <math>(GRDY_v) \;</math> меньше, чем у v, то алгоритм использует <math>(GRDY_v) \;</math> вместо v, что снижает стоимость максимального независимого множества. Следующая теорема о значении полной стоимости выбранного таким образом множества была доказана в [12, 13]. | ||
Строка 50: | Строка 50: | ||
С точки зрения временной сложности вычисления наиболее продолжительным этапом данного распределенного алгоритма является построение минимального остовного дерева. Кун и др. [10] привели нижнюю границу распределенной временной сложности любого распределенного алгоритма, вычисляющего минимальное доминирующее множество на графе. В сущности, авторы доказали, что даже в случаях без требований связности и взвешенности любой распределенный алгоритм аппроксимации с гарантированным получением полилогарифмической аппроксимации для этой задачи должен иметь сложность не ниже <math>\Omega (log \; \Delta / log \; log \; \Delta)</math>. | С точки зрения временной сложности вычисления наиболее продолжительным этапом данного распределенного алгоритма является построение минимального остовного дерева. Кун и др. [10] привели нижнюю границу распределенной временной сложности любого распределенного алгоритма, вычисляющего минимальное доминирующее множество на графе. В сущности, авторы доказали, что даже в случаях без требований связности и взвешенности любой распределенный алгоритм аппроксимации с гарантированным получением полилогарифмической аппроксимации для этой задачи должен иметь временную сложность не ниже <math>\Omega (log \; \Delta / log \; log \; \Delta)</math>. | ||
== Применение == | == Применение == |
правка