Разрывающее множество вершин на неориентированном графе: различия между версиями

Перейти к навигации Перейти к поиску
(Новая страница: «== Ключевые слова и синонимы == Обход нечетного цикла == Постановка задачи == Задача нахо…»)
 
Строка 5: Строка 5:
Задача нахождения разрывающего множества вершин на неориентированном графе (The UNDIRECTED FEEDBACK VERTEX SET, UFVS) определяется следующим образом.
Задача нахождения разрывающего множества вершин на неориентированном графе (The UNDIRECTED FEEDBACK VERTEX SET, UFVS) определяется следующим образом.


Дано: неориентированный граф G = (V, E) и целое число k > 0.
Дано: неориентированный граф <math>G = (V, E) \;</math> и целое число <math>k \ge 0 \;</math>.


Требуется: найти [[Feedback vertex set|разрывающее множество вершин]] F С V с jFj < k, такое, что каждый цикл в графе G содержит не менее одной вершины из F. (В результате удаления всех вершин F из G граф превращается в лес).
Требуется: найти [[Feedback vertex set|разрывающее множество вершин]] <math>F \subseteq V \;</math>, <math>|F| \le k \;</math>, такое, что каждый цикл в графе G содержит не менее одной вершины из F. (В результате удаления всех вершин F из G граф превращается в лес).




Карп [11] показал, что эта задача является NP-полной. Лунд и Янакаккис [12] доказали, что существует некоторая константа e > 0, такая, что аппроксимация версии оптимизации UFVS с коэффициентом 1 + e является NP-полной задачей. Лучший известный на данный момент алгоритм аппроксимации с полиномиальным временем выполнения имеет коэффициент 2 [1, 4]. Беккер и др. [3] предложили простой и элегантный рандомизированный алгоритм, решающий задачу UFVS за время O(c-4k-kn) на графе с n вершинами и m ребрами при помощи нахождения разрывающего множества вершин размера k с вероятностью не менее 1 (1 4 k)ci для произвольной константы c. Точный алгоритм решения задачи UFVS с временем выполнения O(1.7548n) недавно разработали Фомин и др. [9]. В контексте параметризованной сложности [8, 13] Бодлендер [5], а также Дауни и Феллоуз [7] первыми показали, что задача разрешима при помощи алгоритмов с фиксированными параметрами, т.е. что комбинаторный взрыв при ее решении может быть ограничен параметром k. Наилучший известный на данный момент алгоритм решения задачи UFVS с фиксированным параметром выполняется за время O(ck-mn) для константы c [6, 10] (в [6] представлен анализ наилучшего времени выполнения, имеющего место при значении константы c = 10,567). Этот алгоритм будет рассмотрен далее.
Карп [11] показал, что эта задача является NP-полной. Лунд и Янакаккис [12] доказали, что существует некоторая константа <math>\epsilon > 0 \;</math>, такая, что аппроксимация версии оптимизации UFVS с коэффициентом <math>1 + \epsilon \;</math> является NP-полной задачей. Лучший известный на данный момент алгоритм аппроксимации с полиномиальным временем выполнения имеет коэффициент 2 [1, 4]. Беккер и др. [3] предложили простой и элегантный рандомизированный алгоритм, решающий задачу UFVS за время <math>O(c \cdot 4^k \cdot kn) \;</math> на графе с n вершинами и m ребрами при помощи нахождения разрывающего множества вершин размера k с вероятностью не менее <math>1 - (1 - 4^{-k})^{c4^k} \;</math> для произвольной константы c. Точный алгоритм решения задачи UFVS с временем выполнения <math>O(1,7548^n) \;</math> недавно разработали Фомин и др. [9]. В контексте параметризованной сложности [8, 13] Бодлендер [5], а также Дауни и Феллоуз [7] первыми показали, что задача разрешима при помощи алгоритмов с фиксированными параметрами, т.е. что комбинаторный взрыв при ее решении может быть ограничен параметром k. Наилучший известный на данный момент алгоритм решения задачи UFVS с фиксированным параметром выполняется за время <math>O(c^k \cdot mn) \;</math> для константы c [6, 10] (в [6] представлен анализ наилучшего времени выполнения, имеющего место при значении константы c = 10,567). Этот алгоритм будет рассмотрен далее.


1Supported by the Deutsche Forschungsgemeinschaft,  Emmy Noether research group PIAF (fixed-parameter algorithms), NI369/4
== Основные результаты ==
== Основные результаты ==
Алгоритм решения задачи UFVS за время O(ck-mn)основан на так называемой технике «итеративного сжатия», введенной Ридом и др. [14]. Основная идея этой техники проста, но эффективна: для вывода алгоритма с фиксированным параметром для задачи минимизации достаточно задать «подпрограмму сжатия» с фиксированным параметром, которая для решения размера (k + 1) либо доказывает, что решения размера k не существует, либо строит такое решение. Начиная с тривиального экземпляра и итеративно применяя подпрограмму сжатия линейное количество раз к экземплярам большего размера, получаем алгоритм решения задачи с фиксированным параметром. Главная проблема при применении этой техники к задаче UFVS заключается в том, чтобы показать, что такая подпрограмма сжатия с фиксированным параметром существует.
Алгоритм решения задачи UFVS за время O(ck-mn)основан на так называемой технике «итеративного сжатия», введенной Ридом и др. [14]. Основная идея этой техники проста, но эффективна: для вывода алгоритма с фиксированным параметром для задачи минимизации достаточно задать «подпрограмму сжатия» с фиксированным параметром, которая для решения размера (k + 1) либо доказывает, что решения размера k не существует, либо строит такое решение. Начиная с тривиального экземпляра и итеративно применяя подпрограмму сжатия линейное количество раз к экземплярам большего размера, получаем алгоритм решения задачи с фиксированным параметром. Главная проблема при применении этой техники к задаче UFVS заключается в том, чтобы показать, что такая подпрограмма сжатия с фиксированным параметром существует.
4551

правка

Навигация