4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 22: | Строка 22: | ||
'''Ограничения''' | '''Ограничения''' | ||
Временная сложность построения суффиксного дерева для строки S длины n зависит от размера базового алфавита <math>\Sigma \;</math>. Он может быть константным, может быть целочисленным <math>\Sigma = \{1, 2, ., n \} \;</math>, а может быть произвольным конечным множеством, элементы которого можно сравнивать за константное время. Заметим, что третий случай можно свести ко второму, если отобразить символы алфавита на множество {1, ..., n}, хотя при этом возникают дополнительные затраты на сортировку <math>\Sigma \;</math>. | Временная сложность построения суффиксного дерева для строки S длины n зависит от размера базового алфавита <math>\Sigma \;</math>. Он может быть константным, может быть целочисленным <math>\Sigma = \{1, 2, ..., n \} \;</math>, а может быть произвольным конечным множеством, элементы которого можно сравнивать за константное время. Заметим, что третий случай можно свести ко второму, если отобразить символы алфавита на множество {1, ..., n}, хотя при этом возникают дополнительные затраты на сортировку <math>\Sigma \;</math>. | ||
Строка 31: | Строка 31: | ||
Требуется: построить суффиксное дерево T(S). | Требуется: построить суффиксное дерево T(S). | ||
Если предположить, что ребра, выходящие из каждой вершины, лексикографически упорядочены, что обычно имеет место, суффиксное дерево позволяет получить отсортированный порядок S | Если предположить, что ребра, выходящие из каждой вершины, лексикографически упорядочены, что обычно имеет место, суффиксное дерево позволяет получить отсортированный порядок символов строки S за линейное время. Таким образом, построение суффиксного дерева наследует нижние границы сложности задачи сортировки: <math>\Omega(n \; log \; n)</math> в случае алфавита общего вида и <math>\Omega(n) \;</math> для целочисленных алфавитов. | ||
== Основные результаты == | == Основные результаты == |
правка