4511
правок
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) мНет описания правки |
||
(не показана 31 промежуточная версия этого же участника) | |||
Строка 1: | Строка 1: | ||
== Ключевые слова и синонимы == | == Ключевые слова и синонимы == | ||
Разработка алгоритма | Разработка аппроксимационного алгоритма | ||
== Определение == | == Определение == | ||
Пусть дано множество точек, называемых полюсами, в метрическом пространстве. Задача заключается в нахождении кратчайшего дерева, связывающего все точки. В случае деревьев Штейнера используются три основных метрических пространства: евклидова плоскость, плоскость с прямолинейными расстояниями и сеть с взвешенными ребрами. | Пусть дано множество точек, называемых полюсами, в метрическом пространстве. Задача заключается в нахождении кратчайшего дерева, связывающего все точки. В случае деревьев Штейнера используются три основных метрических пространства: евклидова плоскость, плоскость с прямолинейными расстояниями и сеть с взвешенными ребрами. Задачи построения [[дерево Штейнера|дерева Штейнера]] в этих метрических пространствах носят названия [[Евклидова задача Штейнера|евклидовой задачи Штейнера]] (Euclidean Steiner Tree, EST), ''прямолинейного дерева Штейнера'' (Rectilinear Steiner Tree, RST) и ''сетевого дерева Штейнера'' (Network Steiner Tree, NST), соответственно. Было обнаружено, что для EST и RST имеются аппроксимационные схемы с полиномиальным временем выполнения (PTAS) при помощи адаптивного разбиения. Однако для NST существует положительное число r, такое, что вычисление r-аппроксимации является NP-полной задачей. До настоящего момента лучший коэффициент эффективности для аппроксимации NST с полиномиальным временем выполнения был получен при помощи k-ограниченных деревьев Штейнера. Однако на практике очень часто используется итеративное 1-дерево Штейнера. Фактически итеративное 1-дерево Штейнера уже давно предлагалось в качестве кандидата на хорошую аппроксимацию минимальных деревьев Штейнера. Оно отлично проявило себя в компьютерных экспериментах, однако не было проведено корректного анализа, который показал бы, что коэффициент эффективности итеративного 1-дерева Штейнера превосходит коэффициент эффективности минимального остовного дерева. Недавно такую работу проделали Ду и коллеги [9]. Небольшое различие в построении 3-ограниченного дерева Штейнера и итеративного 1-дерева Штейнера приводит к значительному различию при анализе этих двух типов деревьев. В чем заключается сложность такого анализа? Это будет описано ниже. | ||
== История и предпосылки == | == История и предпосылки == | ||
Задача построения дерева Штейнера была предложена Карлом Фридрихом Гауссом в 1835 году в виде обобщения задачи Ферма. Пусть даны три точки A, B и C на евклидовой плоскости. Ферма изучал задачу нахождения точки S, для которой |SA| + |SB| + |SC| будет минимально. Он обнаружил, что в случае, когда все три внутренних угла треугольника ABC имеют величину менее 120°, оптимальная точка S должна | Задача построения дерева Штейнера была предложена Карлом Фридрихом Гауссом в 1835 году в виде обобщения задачи Ферма. Пусть даны три точки A, B и C на евклидовой плоскости. Ферма изучал задачу нахождения точки S, для которой |SA| + |SB| + |SC| будет минимально. Он обнаружил, что в случае, когда все три внутренних угла треугольника ABC имеют величину менее 120°, оптимальная точка S должна находиться в положении <math>\angle ASB = \angle BSC = \angle CSA = 120^{\circ} \;</math>. | ||
Строка 21: | Строка 20: | ||
[[Файл:Steiner_trees_01.png]] | |||
Рисунок 1. | |||
21 марта 1836 в ответном письме Гаусс | 21 марта 1836 в ответном письме Гаусс пояснил Шумахеру, что ошибка в парадоксе Ферма возникает в тот момент, когда задача Ферма для четырех точек A, B, C, D заменяется на задачу для трех точек F, C, D. Когда A и B оказываются идентичными F, суммарное расстояние от E до четырех точек A, B, C и D равняется 2|EF| + |EC| + |ED|, а не |EF| + |EC| + |ED|. Следовательно, точка E не может быть решением задачи Ферма для F, C и D. Что более важно, Гаусс предложил новую задачу. По его мнению, интереснее было бы найти кратчайшую сеть, а не точку. Гаусс также предложил несколько возможных вариантов соединений кратчайшей сети для четырех заданных точек. | ||
К сожалению, исследователи деревьев Штейнера на ранней стадии изучения вопроса не были знакомы с письмом Гаусса. Рихард Курант и Герберт Роббинс в своей популярной книге «Что такое математика?» , опубликованной в 1941 году, назвали задачу Гаусса деревом Штейнера, так что именно это наименование получило широкое распространение. | К сожалению, исследователи деревьев Штейнера на ранней стадии изучения вопроса не были знакомы с письмом Гаусса. Рихард Курант и Герберт Роббинс в своей популярной книге «Что такое математика?» [6], опубликованной в 1941 году, назвали задачу Гаусса деревом Штейнера, так что именно это наименование получило широкое распространение. | ||
Строка 33: | Строка 34: | ||
Хорошо известной задачей является гипотеза Гилберта-Поллака об отношении Штейнера, представляющем собой минимальное отношение длин между минимальным деревом Штейнера и минимальным остовным деревом | Хорошо известной задачей является гипотеза Гилберта-Поллака об отношении Штейнера, представляющем собой минимальное отношение длин между минимальным деревом Штейнера и минимальным остовным деревом на том же множестве точек. Гилберт и Поллак в 1968 году предположили, что отношение Штейнера на евклидовой плоскости равно <math>\sqrt{3} / 2 \;</math> и достигается для трех вершин равностороннего треугольника. Доказательству этой гипотезы было посвящено множество работ, в конечном итоге ее доказали Ду и Хван [7]. | ||
Еще одной важной задачей является задача [[лучшая аппроксимация|лучшей аппроксимации]]. Довольно долгое время не удавалось доказать наличие аппроксимации с коэффициентом эффективности меньше обратного значения отношения Штейнера. Первый прорыв совершил Зеликовский [14], который нашел 11/6-аппроксимацию с полиномиальным временем выполнения для задачи NST, что лучше 1/2 – обратного значения отношения Штейнера для сети с взвешенными ребрами. Позднее Берман и Рамайе [2] предложили 92/72-аппроксимацию с полиномиальным временем выполнения для RST, а Ду, Цзян и Фэн [8] закрыли тему, показав, что в любом метрическом пространстве существует аппроксимация с полиномиальным временем выполнения с коэффициентом эффективности меньше обратного значения отношения Штейнера, при условии, что для любого множества с фиксированным количеством точек его дерево Штейнера вычислимо за полиномиальное время. | Еще одной важной задачей является задача [[лучшая аппроксимация|лучшей аппроксимации]]. Довольно долгое время не удавалось доказать наличие аппроксимации с коэффициентом эффективности меньше обратного значения отношения Штейнера. Первый прорыв совершил Зеликовский [14], который нашел 11/6-аппроксимацию с полиномиальным временем выполнения для задачи NST, что лучше 1/2 – обратного значения отношения Штейнера для сети с взвешенными ребрами [''прим. переводчика: вероятно, имелось в виду значение 2, а не 1/2?'']. Позднее Берман и Рамайе [2] предложили 92/72-аппроксимацию с полиномиальным временем выполнения для RST, а Ду, Цзян и Фэн [8] закрыли тему, показав, что в любом метрическом пространстве существует аппроксимация с полиномиальным временем выполнения с коэффициентом эффективности меньше обратного значения отношения Штейнера, при условии, что для любого множества с фиксированным количеством точек его минимальное дерево Штейнера вычислимо за полиномиальное время. | ||
Все вышеперечисленные аппроксимации были созданы на базе семейства k-ограниченных деревьев Штейнера. В результате улучшения некоторых деталей построения константный коэффициент эффективности удалось понизить, однако при этом улучшения также становятся меньше. В 1996 году Ароре [ ] удалось достичь значительного прогресса в решении задач EST и RST. Он доказал существование PTAS для этих двух задач. Таким образом, исследователи-теоретики теперь основное внимание уделяют задаче NST. Берн и Плассман [ ] показали, что эта задача является MaxSNP-полной. Это означает, что существует положительное число r, такое, что вычисление r-аппроксимации для NST является NP-полной задачей. Самый эффективный на данный момент алгоритм построения NST предложили Робин и Зеликовский [12]. Они также дали очень простой анализ хорошо известной эвристики – итеративного 1-дерева Штейнера для псевдодвудольных графов. | Все вышеперечисленные аппроксимации были созданы на базе семейства k-ограниченных деревьев Штейнера. В результате улучшения некоторых деталей построения константный коэффициент эффективности удалось понизить, однако при этом улучшения также становятся меньше. В 1996 году Ароре [1] удалось достичь значительного прогресса в решении задач EST и RST. Он доказал существование PTAS для этих двух задач. Таким образом, исследователи-теоретики теперь основное внимание уделяют задаче NST. Берн и Плассман [3] показали, что эта задача является MaxSNP-полной. Это означает, что существует положительное число r, такое, что вычисление r-аппроксимации для NST является NP-полной задачей. Самый эффективный на данный момент алгоритм построения NST предложили Робин и Зеликовский [12]. Они также дали очень простой анализ хорошо известной эвристики – итеративного 1-дерева Штейнера для псевдодвудольных графов. | ||
Анализ итеративного 1-дерева Штейнера также долго время оставался нерешенной задачей. С тех пор как Чанг [4, 5] в 1972 году предположил, что итеративное 1-дерево Штейнера аппроксимирует минимальное дерево Штейнера, его эффективность в | Анализ итеративного 1-дерева Штейнера также долго время оставался нерешенной задачей. С тех пор как Чанг [4, 5] в 1972 году предположил, что итеративное 1-дерево Штейнера аппроксимирует минимальное дерево Штейнера, его эффективность в компьютерных экспериментах оказалась весьма высокой [10, 13], однако подкреплений со стороны теоретического анализа этому утверждению до сих пор не найдено. Фактически и k-ограниченное дерево Штейнера, и итеративное 1-дерево Штейнера строятся при помощи жадных алгоритмов, но с различными типами гармонических функций. В случае итеративного 1-дерева Штейнера гармоническая функция не является субмодулярной, тогда как в случае k-ограниченного дерева Штейнера она является таковой; свойство, выполняющееся для второго типа деревьев, может оказаться неверным для первого. Оказалось, что субмодулярность гармонической функции исключительно важна для анализа жадных аппроксимаций [11]. Ду и др. [9] дали точный анализ для итеративного 1-дерева Штейнера при помощи обобщенной техники обработки несубмодулярной гармонической функции. | ||
== Основные результаты == | == Основные результаты == | ||
Рассмотрим входной граф с взвешенными ребрами G = (V, E) для задачи построения NST (сетевого дерева Штейнера). Предположим, что G – полный граф и что веса ребер удовлетворяют неравенству треугольника. В противном случае рассмотрим полный граф на V, в котором каждое ребро (u, v) имеет вес, равный длине кратчайшего пути между u и v в графе G. Пусть дано множество полюсов P; деревом Штейнера является дерево, связывающее все указанные полюса таким образом, что каждый лист является полюсом. | Рассмотрим входной граф с взвешенными ребрами G = (V, E) для задачи построения NST (сетевого дерева Штейнера). Предположим, что G – полный граф и что веса ребер удовлетворяют неравенству треугольника. В противном случае рассмотрим полный граф на V, в котором каждое ребро (u, v) имеет вес, равный длине кратчайшего пути между u и v в графе G. Пусть дано множество полюсов P; [[дерево Штейнера|деревом Штейнера]] является дерево, связывающее все указанные полюса таким образом, что каждый лист является полюсом. | ||
В дереве Штейнера полюс может иметь степень больше единицы. Можно провести декомпозицию дерева Штейнера, разбив все вершины со степенью больше 1 на меньшие деревья, в которых каждый полюс является листом. В такой декомпозиции каждое полученное маленькое дерево называется [[полный компонент|полным компонентом]]. Размер полного компонента равен количеству содержащихся в нем полюсов. Дерево Штейнера является k-ограниченным, если каждый его полный компонент имеет размер не более k. Кратчайшее k-ограниченное дерево Штейнера также называется k-ограниченным [[минимальное дерево Штейнера|минимальным деревом Штейнера]]. Обозначим его длину за <math>smt_k(P) \;</math>. Очевидно, что <math>smt_2(P) \;</math> – длина минимального остовного дерева на P, также обозначаемая как mst(P). Пусть smt(P) обозначает длину минимального дерева Штейнера на P. Если значение <math>smt_3(P) \;</math> можно вычислить за полиномиальное время, то этот способ лучше подходит для аппроксимации smt(P) по сравнению с mst(P). Однако до сих пор для <math>smt_3(P) \;</math> не было найдено аппроксимации с полиномиальным временем. Поэтому Зеликовский [14] использовал жадную аппроксимацию <math>smt_3(P) \;</math> для аппроксимации smt(P). Чанг [4, 5] использовал похожий жадный алгоритм для вычисления итеративного 1-дерева Штейнера. Пусть <math>\mathcal{F} \;</math> – семейство подграфов исходного графа G с взвешенными ребрами. Для любого связного подграфа H обозначим за mst(H) длину минимального остовного дерева H, а за mst(H) – сумму mst(H') для H' по всем связным компонентам для любого подграфа H. | |||
Определим gain(H) = mst(P) - mst(P : H) - mst(H), где mst(P : H) – длина минимального остовного дерева, связывающего все несвязанные полюса в P после того, как каждое ребро H будет стянуто в точку. | |||
'''Жадный алгоритм <math>H \gets \empty \;</math>;''' | |||
'''while''' в P остаются не связанные с H элементы '''do''' | |||
выбрать <math>F \in \mathcal{F} \;</math> так, чтобы максимизировать gain(H <math>\cup \;</math> F); | |||
выдать результат mst(H). | |||
Если множество <math>\mathcal{F} \;</math> состоит из всех полных компонентов размером не более 3, этот жадный алгоритм дает на выходе 3-ограниченное дерево Штейнера, введенное Зеликовским [14]. Если <math>\mathcal{F} \;</math> состоит из всех трехлучевых звезд и всех ребер (где трехлучевая звезда представляет собой дерево с 3 листьями и центральной вершиной), то этот жадный алгоритм дает на выходе итеративное 1-дерево Штейнера. Интересный факт, на которой обратили внимание Ду и коллеги [9], заключается в том, что функция gain(<math>\cdot</math>) является субмодулярной над всеми полными компонентами размера не более 3, но не является субмодулярной над всеми трехлучевыми звездами и ребрами. | |||
Рассмотрим базовое множество E и функцию f, областью определения которой являются все подмножества E, а областью значений – вещественные числа. f является [[субмодулярная функция|субмодулярной]], если для любых двух подмножеств A, B множества E выполняется соотношение | |||
<math>f(A) + f(B) \ge f(A \cup B) + f(A \cap B) \;</math> | |||
Для <math>x \in E \;</math> и <math>A \subseteq E \;</math> обозначим <math>\Delta_x f(A) = f(A \cup \{ x \}) - f(A) \;</math>. | |||
'''Лемма 1.''' Функция f является субмодулярной в том и только том случае, если для любых <math>A \subset E \;</math> и различных <math>x, y \in E - A \;</math> выполняется соотношение | |||
(1) <math>\Delta_x \; \Delta_y \; f(A) \le 0</math> | |||
Доказательство. Предположим, f является субмодулярной. Положим B = A | Доказательство. Предположим, что f является субмодулярной. Положим <math>B = A \cup \{ x \} \;</math> и <math>C = A \cup \{ y \} \;</math>. Тогда <math>B \cup C = A \cup A \cup \{ x, y \} \;</math> и <math>B \cap C = A \;</math>. Следовательно, имеет место | ||
f(A | |||
<math>f(A \cup \{ x, y \}) - f(A \cup \{ x \}) - f(A \cup \{ y \}) + f(A) \le 0 \;</math>, | |||
это означает, что соотношение (1) верно. | это означает, что соотношение (1) верно. | ||
Напротив, предположим, что свойство (1) выполняется для любых A | Напротив, предположим, что свойство (1) выполняется для любых <math>A \subset E \;</math> и различных <math>x, y \in E - A \;</math>. Рассмотрим два подмножества A, B множества E. Если <math>A \subseteq B \;</math> или <math>B \subseteq A \;</math>, тогда тривиально получается | ||
f(A) + f(B) | |||
<math>f(A) + f(B) \ge f(A \cup B) + f(A \cap B) \;</math>. | |||
Следовательно, должно иметь место A | Следовательно, должно иметь место <math>A \backslash B \ne \empty \;</math> и <math>B \backslash A \ne \empty \;</math>. Запишем это как <math>A \backslash B = \{ x_1, ..., x_k \} \;</math> и <math>B \backslash A = \{ y_1, ..., y_h \} \;</math>. Тогда | ||
<math>f(A \; \cup \; B) - f(A) - f(B) + f(A \; \cap \; B) = \sum^k_{i = 1} \sum^h_{j = 1} \Delta_{x_i} \Delta_{y_j} f(A \; \cup \; \{ x_1, ..., x_{i - 1} \} \; \cup \; \{ y_1, ..., y_{j - 1} \}) \le 0</math>, | |||
f( | где <math>\{ x_1, ..., x_{i - 1} \} = \empty \;</math> для i = 1 и <math>\{ y_1, ..., y_{j - 1} \} = \empty \;</math> для j = 1. | ||
< | |||
где | |||
Лемма 2. Определим f(H) = | '''Лемма 2.''' Определим f(H) = -mst(P : H). Тогда функция f является субмодулярной над множеством ребер E. | ||
Доказательство. Заметим, что для любых двух различных ребер x и y, не принадлежащих подграфу H, | Доказательство. Заметим, что для любых двух различных ребер x и y, не принадлежащих подграфу H, | ||
<math>\Delta_x \Delta_y f(H) = -mst(P : H \; \cup \; x \; \cup \; y) + mst(P : H \; \cup \; x) + mst(P : H \; \cup \; y) - mst(P : H) = (mst(P : H) - mst(P : H \; \cup x \; \cup \; y)) - (mst(P : H) - mst(P : H \; \cup \; x)) + (mst(P : H) - mst(P : H \; \cup \; y))</math>. | |||
Пусть T – минимальное остовное дерево для несвязанных полюсов после стягивания каждого ребра H в точку. T содержит путь <math>P_x \;</math>, соединяющий две конечные точки x, и путь <math>P_y \;</math>, соединяющий две конечные точки y. Пусть <math>e_x (e_y) \;</math> – самое длинное ребро пути <math>P_x (P_y) \;</math>. Тогда | |||
<math>mst(P : H) - mst(P : H \; \cup \; x) = length(e_x)</math>; | |||
<math>mst(P : H) - mst(P : H \; \cup \; y) = length(e_y)</math>. | |||
Значение <math>mst(P : H) - mst(P : H \; \cup \; x \; \cup \; y)</math> можно вычислить следующим образом: выберем самое длинное ребро e' из <math>P_x \cup P_y</math>. Заметим, что <math>T \cup x \cup y - e'</math> содержит уникальный цикл Q. Выберем самое длинное ребро e" из <math>(P_x \cup P_y) \cap Q</math>. Тогда | |||
<math>mst(P : H) - mst(P : H \cup x \cup y) = length(e') + length(e'')</math>. | |||
Теперь, чтобы показать субмодулярность f, достаточно доказать неравенство | |||
(2) <math>length(e_x) + length(e_y) \ge length(e') + length(e'')</math>. | |||
Случай 1. <math>e_x \notin P_x \cap P_y</math> и <math>e_y \notin P_x \cap P_y</math>. Без потери общности будем считать, что <math>length(e_x) \ge length(e_y) \;</math>. Тогда можно выбрать <math>e' = e_x \;</math> таким образом, что <math>(P_x \cup P_y) \cap Q = P_y</math>. Следовательно, можно выбрать <math>e'' = e_y \;</math>. Таким образом, выполняется равенство для (2). | |||
Случай 2. <math>e_x \notin P_x \cap P_y</math> и <math>e_y \in P_x \cap P_y</math>. Очевидно, что <math>length(e_x) \ge length(e_y)</math>. Тогда можно выбрать <math>e' = e_x \;</math> таким образом, что <math>(P_x \cup P_y) \cap Q = P_y</math>. Следовательно, можно выбрать <math>e'' = e_y \;</math>. Таким образом, выполняется равенство для (2). | |||
Случай 3. <math>e_x \in P_x \cap P_y</math> и <math>e_y \notin P_x \cap P_y</math>. Аналогично случаю 2. | |||
Случай 4. <math>e_x \in P_x \cap P_y</math> и <math>e_y \in P_x \cap P_y</math>. В этом случае <math>length(e_x) = length(e_y) = length(e') \;</math>. Таким образом, (2) верно. □ | |||
Далее поясняется, что субмодулярность gain(<math>\cdot</math>) имеет место для k-ограниченного дерева Штейнера. | |||
'''Предположение'''. Пусть <math>\mathcal{E} \;</math> – множество всех полных компонентов дерева Штейнера. Тогда gain(<math>\cdot</math>) как функция от множества всех подмножеств <math>\mathcal{E} \;</math> является субмодулярной. | |||
Доказательство. Заметим, что для любых <math>\mathcal{H} \subset \mathcal{E} \;</math> и <math>x, y \in \mathcal{E} - \mathcal{H} \;</math> верно <math>\Delta_x \Delta_y mst(H) = 0 \;</math>, где <math>H = \cup_{z \in \mathcal{H}} z \;</math>. Таким образом, верность предположения следует из леммы 2. □ | |||
Пусть <math>\mathcal{F} \;</math> – множество трехлучевых звезд и ребер, выбранных жадным алгоритмом для вычисления итеративного 1-дерева Штейнера. Тогда gain(<math>\cdot</math>) может и не быть субмодулярной на <math>\mathcal{F} \;</math>. Чтобы убедиться в этом, рассмотрим две трехлучевых звезды x и y на рис. 2. Заметим, что <math>gain(x \cup y) > gain(x), gain(y) \le 0, gain(\empty) = 0 \;</math>. Имеет место соотношение | |||
<math>gain(x \cup y) - gain(x) - gain(y) + gain(\empty) > 0 \;</math>. | |||
[[Файл:Steiner_trees_02.png]] | |||
Рисунок 2. | |||
== Применение == | == Применение == | ||
Задача построения дерева Штейнера является классической NP-полной проблемой и имеет множество приложений | Задача построения дерева Штейнера является классической NP-полной проблемой и имеет множество приложений при разработке компьютерных микросхем, междугородних телефонных линий, многоадресной маршрутизации в сетях телекоммуникаций и т.п. Разработано множество эвристик жадного типа для построения деревьев Штейнера. Большинство из них демонстрируют высокую эффективность в компьютерных экспериментах, однако без подкрепления со стороны теоретического анализа. Предложенный подход может стать его основой. | ||
== Открытые вопросы == | == Открытые вопросы == | ||
До сих пор неясно, является ли задача построения 3-ограниченного минимального дерева Штейнера NP-полной. Известно, что она является таковой при построении k-ограниченного минимального дерева Штейнера при k > | До сих пор неясно, является ли задача построения 3-ограниченного минимального дерева Штейнера NP-полной. Известно, что она является таковой при построении k-ограниченного минимального дерева Штейнера при <math>k \ge 4 \;</math>. | ||
Строка 145: | Строка 164: | ||
* ''[[Минимальные остовные деревья]] | * ''[[Минимальные остовные деревья]] | ||
* ''[[Прямолинейное дерево Штейнера]] | * ''[[Прямолинейное дерево Штейнера]] | ||
== Литература == | == Литература == |
правок