Радиораскраска в планарных графах: различия между версиями

Перейти к навигации Перейти к поиску
м
нет описания правки
мНет описания правки
 
(не показаны 2 промежуточные версии этого же участника)
Строка 54: Строка 54:
• Вначале было показано, что количество цветов, используемое при нахождении ''минимального порядка диапазона'' для радиораскраски графа G, отличается от хроматического числа квадрата этого графа – <math>\chi (G^2) \;</math>. В частности, оно может быть больше <math>\chi (G^2) \;</math>.
• Вначале было показано, что количество цветов, используемое при нахождении ''минимального порядка диапазона'' для радиораскраски графа G, отличается от хроматического числа квадрата этого графа – <math>\chi (G^2) \;</math>. В частности, оно может быть больше <math>\chi (G^2) \;</math>.


• Затем было доказано, что задача радиораскраски для графов общего вида с трудом поддается аппроксимации (за исключением случая NP = ZPP – класса задач с рандомизированными алгоритмами с нулевой ошибкой и полиномиальным временем исполнения) с коэффициентом <math>n^{1/2 - \epsilon} \;</math> (для любого <math>\epsilon > 0 \;</math>), где n – количество вершин графа. Однако при рассмотрении некоторых специальных разновидностей графов задача становится проще.
• Затем было доказано, что задача радиораскраски для графов общего вида с трудом поддается аппроксимации (за исключением случая NP = ZPP – класса задач с рандомизированными алгоритмами с нулевой ошибкой и полиномиальным временем выполнения) с коэффициентом <math>n^{1/2 - \epsilon} \;</math> (для любого <math>\epsilon > 0 \;</math>), где n – количество вершин графа. Однако при рассмотрении некоторых специальных разновидностей графов задача становится проще.


Было показано, что задачи нахождения минимального диапазона и минимального порядка диапазона для радиораскраски являются NP-полными для планарных графов. Заметим, что некоторые комбинаторные задачи остаются сложными и для планарных графов, притом доказать их сложность также непросто, поскольку при этом необходимо использовать «планарные приспособления», сложные для нахождения и понимания.
Было показано, что задачи нахождения минимального диапазона и минимального порядка диапазона для радиораскраски являются NP-полными для планарных графов. Заметим, что некоторые комбинаторные задачи остаются сложными и для планарных графов, притом доказать их сложность также непросто, поскольку при этом необходимо использовать «планарные приспособления», сложные для нахождения и понимания.


• Был представлен алгоритм с временем исполнения <math>O(n \Delta (G)) \;</math>, ''аппроксимирующий'' минимальный порядок радиораскраски, <math>X_{order} \;</math>, в планарном графе G ''с константным коэффициентом, который стремится к 2'' по мере возрастания максимальной степени <math>\Delta(G) \;</math> графа G.
• Был представлен алгоритм с временем выполнения <math>O(n \Delta (G)) \;</math>, ''аппроксимирующий'' минимальный порядок радиораскраски, <math>X_{order} \;</math>, в планарном графе G ''с константным коэффициентом, который стремится к 2'' по мере возрастания максимальной степени <math>\Delta(G) \;</math> графа G.


Представленный алгоритм вдохновлен теоремой Хёвела и Макгиннеса о конструктивной раскраске [9]. Построение из [9], как показано, может привести к получению алгоритма с временем <math>O(n^2) \;</math>, предполагая, что планарное вложение графа G задано. В [5, 6] временная сложность алгоритма аппроксимации была улучшена, также был представлен намного более простой алгоритм для проверки и внедрения, не требующий на входе планарного вложения.
Представленный алгоритм вдохновлен теоремой Хёвела и Макгиннеса о конструктивной раскраске [9]. Построение из [9], как показано, может привести к получению алгоритма с временем <math>O(n^2) \;</math>, предполагая, что планарное вложение графа G задано. В [5, 6] временная сложность аппроксимационного алгоритма была улучшена, также был представлен намного более простой алгоритм для проверки и внедрения, не требующий на входе планарного вложения.


• Наконец, была рассмотрена задача ''оценки количества различных радиораскрасок'' планарного графа G. Это NP-полная задача (что можно легко заметить в связи с представленным в данных работах способом редукции полноты, которая может быть выполнена консервативным образом). Авторы применяют здесь стандартную технику, сочетая цепи Маркова и новый способ формирования пар, чтобы получить доказательство ''быстрой сходимости'' (см., например, [10]) и представляют ''полностью полиномиальную рандомизированную схему аппроксимации'' для оценки количества радиораскрасок с <math>\lambda \;</math> цветами для планарного графа G, когда <math>\lambda \ge 4 \Delta (G) + 50 \;</math>.
• Наконец, была рассмотрена задача ''оценки количества различных радиораскрасок'' планарного графа G. Это NP-полная задача (что можно легко заметить в связи с представленным в данных работах способом редукции полноты, которая может быть выполнена консервативным образом). Авторы применяют здесь стандартную технику, сочетая цепи Маркова и новый способ формирования пар, чтобы получить доказательство ''быстрой сходимости'' (см., например, [10]) и представляют ''полностью полиномиальную рандомизированную аппроксимационную схему'' для оценки количества радиораскрасок с <math>\lambda \;</math> цветами для планарного графа G, когда <math>\lambda \ge 4 \Delta (G) + 50 \;</math>.




Строка 68: Строка 68:




Другая вариация алгоритма радиораскраски для планарных графов под названием ''раскраска на расстоянии 2'' была рассмотрена в [12]. Задача заключается в раскраске графа G минимальным количеством цветов таким образом, чтобы вершины на расстоянии ''не больше 2'' были раскрашены в разные цвета. Отметим, что эта задача эквивалентна задаче раскраски квадрата графа <math>G \; (G^2)</math>. В [11] было доказано, что задача раскраски на расстоянии 2 для планарных графов является NP-полной. В [5, 6] было показано, что эта задача отличается от задачи поиска минимального порядка диапазона для радиораскраски графа. Таким образом, из доказательства NP-полноты в [12] не следует NP-полнота задачи поиска минимального порядка диапазона для радиораскраски графа, доказанная в [5, 6]. В [12] также был предложен алгоритм аппроксимации с коэффициентом 9 для раскраски на расстоянии 2 для планарных графов.
Другая вариация алгоритма радиораскраски для планарных графов под названием ''раскраска на расстоянии 2'' была рассмотрена в [12]. Задача заключается в раскраске графа G минимальным количеством цветов таким образом, чтобы вершины на расстоянии ''не больше 2'' были раскрашены в разные цвета. Отметим, что эта задача эквивалентна задаче раскраски квадрата графа <math>G \; (G^2)</math>. В [11] было доказано, что задача раскраски на расстоянии 2 для планарных графов является NP-полной. В [5, 6] было показано, что эта задача отличается от задачи поиска минимального порядка диапазона для радиораскраски графа. Таким образом, из доказательства NP-полноты в [12] не следует NP-полнота задачи поиска минимального порядка диапазона для радиораскраски графа, доказанная в [5, 6]. В [12] также был предложен аппроксимационный алгоритм с коэффициентом 9 для раскраски на расстоянии 2 для планарных графов.




Независимо и параллельно в своей работе [1] Агнарссон и Хальдорссон представили алгоритмы аппроксимации для нахождения хроматического числа в квадратах графов и в графах более высоких степеней <math>(G^k) \;</math>. В частности, они предложили алгоритм аппроксимации с коэффициентом 1,8 для раскраски квадрата планарного графа более высокой степени <math>(\Delta(G) \ge 749) \;</math>. Их метод использует понятие [[индуктивность|индуктивности]] квадрата планарного графа.
Независимо и параллельно в своей работе [1] Агнарссон и Хальдорссон представили аппроксимационные алгоритмы для нахождения хроматического числа в квадратах графов и в графах более высоких степеней <math>(G^k) \;</math>. В частности, они предложили аппроксимационный алгоритм с коэффициентом 1,8 для раскраски квадрата планарного графа более высокой степени <math>(\Delta(G) \ge 749) \;</math>. Их метод использует понятие [[индуктивность|индуктивности]] квадрата планарного графа.


Бодлендер и коллеги [2], также независимо и параллельно, доказали, что задача нахождения минимального диапазона для радиораскраски, которой они дали название <math>\lambda</math>-разметки, является NP-полной для планарных графов, используя подход, близкий к описанному в [5, 6]. В той же работе авторы представили алгоритмы аппроксимации для решения этой задачи для некоторых интересных семейств графов: [[внешнепланарный граф|внешнепланарных]] графов, [[древесная ширина графа|графов с ограниченной древесной шириной]], [[перестановочный граф|перестановочных]] и [[расщепляемый граф|расщепляемых графов]].
Бодлендер и коллеги [2], также независимо и параллельно, доказали, что задача нахождения минимального диапазона для радиораскраски, которой они дали название <math>\lambda</math>-разметки, является NP-полной для планарных графов, используя подход, близкий к описанному в [5, 6]. В той же работе авторы представили аппроксимационные алгоритмы для решения этой задачи для некоторых интересных семейств графов: [[внешнепланарный граф|внешнепланарных]] графов, [[древесная ширина графа|графов с ограниченной древесной шириной]], [[перестановочный граф|перестановочных]] и [[расщепляемый граф|расщепляемых графов]].


== Применение ==
== Применение ==
4501

правка

Навигация