Полностью динамическая связность высоких степеней: различия между версиями

Перейти к навигации Перейти к поиску
мНет описания правки
 
(не показаны 4 промежуточные версии 2 участников)
Строка 1: Строка 1:
== Ключевые слова и синонимы ==
== Ключевые слова и синонимы ==
[[Полностью динамическая реберная связность]]; [[полностью динамическая вершинная связность]]
'''Полностью динамическая связность высоких степеней''' --- ''Fully Dynamic Higher Connectivity''
 
Полностью динамическая реберная связность (''Fully dynamic edge connectivity''); полностью динамическая вершинная связность (''Fully dynamic vertex connectivity'')


== Постановка задачи ==
== Постановка задачи ==
Строка 74: Строка 76:
   
   
== Открытые вопросы ==
== Открытые вопросы ==
Эппстайн и коллеги [], а также Холм и коллеги [12] поднимают интересные вопросы. Во-первых, если эффективные динамические алгоритмы вычисления k-реберной связности для общих значений k известны, то для вычисления k-вершинной связности при <math>k \ge 5 \; </math> эффективных полностью динамических алгоритмов еще не создано – более того, нет даже статических.  Во-вторых, полностью динамические задачи 2-реберной и 2-вершинной связности могут быть решены за полилогарифмическое время на одно обновление, тогда как наилучшие известные границы обновления для реберной и вершинной связности более высоких степеней являются полиномиальными. Остается открытым вопрос, можно ли сократить этот разрыв – иначе говоря, можно ли разработать полилогарифмические алгоритмы для полностью динамических задач 3-реберной и 3-вершинной связности.
Эпстайн и коллеги [3], а также Холм и коллеги [12] поднимают интересные вопросы. Во-первых, если эффективные динамические алгоритмы вычисления k-реберной связности для общих значений k известны, то для вычисления k-вершинной связности при <math>k \ge 5 \; </math> эффективных полностью динамических алгоритмов еще не создано – более того, нет даже статических.  Во-вторых, полностью динамические задачи 2-реберной и 2-вершинной связности могут быть решены за полилогарифмическое время на одно обновление, тогда как наилучшие известные границы обновления для реберной и вершинной связности более высоких степеней являются полиномиальными. Остается открытым вопрос, можно ли сократить этот разрыв – иначе говоря, можно ли разработать полилогарифмические алгоритмы для полностью динамических задач 3-реберной и 3-вершинной связности.


== См. также ==
== См. также ==
Строка 83: Строка 85:
* ''[[Полностью динамические минимальные остовные деревья]]
* ''[[Полностью динамические минимальные остовные деревья]]
* ''[[Полностью динамическая проверка на планарность]]
* ''[[Полностью динамическая проверка на планарность]]
* ''[[Полностью динамическое транзитивное замыкание]]
* ''[[Полностью динамический алгоритм транзитивного замыкания]]


== Литература ==
== Литература ==
Строка 121: Строка 123:


18. Westbrook, J., Tarjan, R.E.: Maintaining bridge-connected and biconnected components on-line. Algorithmica 7, 433-464 (1992)
18. Westbrook, J., Tarjan, R.E.: Maintaining bridge-connected and biconnected components on-line. Algorithmica 7, 433-464 (1992)
[[Категория: Совместное определение связанных терминов]]

Навигация