Автоматическая генерация дерева поиска: различия между версиями

Перейти к навигации Перейти к поиску
Строка 28: Строка 28:
Грэмм и коллеги [3] описали метод получения алгоритмов быстрого поиска по дереву для CLUSTER EDITING и родственных задач, в которых мерой величины является количество операций редактирования k. Чтобы различать разные варианты, подграфы нумеруются таким образом, чтобы каждый экземпляр заведомо содержал не менее одного из этих подграфов. В рамках этого подхода можно найти ветвление для определенного варианта.
Грэмм и коллеги [3] описали метод получения алгоритмов быстрого поиска по дереву для CLUSTER EDITING и родственных задач, в которых мерой величины является количество операций редактирования k. Чтобы различать разные варианты, подграфы нумеруются таким образом, чтобы каждый экземпляр заведомо содержал не менее одного из этих подграфов. В рамках этого подхода можно найти ветвление для определенного варианта.


Стандартным способом систематического получения специализированных ветвлений для вариантов экземпляров является использование сочетания базового ветвления и правил редукции данных. Базовое ветвление представляет собой простейшую технику ветвления; правило редукции данных заменяет экземпляр эквивалентным ему по решению экземпляром меньшего размера за полиномиальное время. Для применения этого подхода к CLUSTER EDITING прежде всего требуется небольшая модификация задачи: мы будем рассматривать аннотированную версию, в которой дуга может быть помечена как неизменная, а отсутствующая дуга – как запрещенная. Любая аннотированная подобным образом пара вершин не подлежит последующему редактированию. Для пары вершин базовое ветвление попадает в один из двух вариантов – неизменное либо запрещенное (для одного из вариантов потребуется операция редактирования). Правила редукции заключаются в следующем: если две неизменных дуги являются смежными, третья дуга порождаемого ими треугольника также должна быть неизменной; если смежными являются неизменная и запрещенная дуги, третья дуга порождаемого ими треугольника должна быть запрещенной.
Стандартным способом систематического получения специализированных ветвлений для вариантов экземпляров является использование сочетания [[базовое ветвление|базового ветвления]] и [[правила редукции данных|правил редукции данных]]. Базовое ветвление представляет собой простейшую технику ветвления; правило редукции данных заменяет экземпляр эквивалентным ему по решению экземпляром меньшего размера за полиномиальное время. Для применения этого подхода к CLUSTER EDITING прежде всего требуется небольшая модификация задачи: мы будем рассматривать ''аннотированную'' версию, в которой дуга может быть помечена как ''неизменная'', а отсутствующая дуга – как ''запрещенная''. Любая аннотированная подобным образом пара вершин не подлежит последующему редактированию. Для пары вершин базовое ветвление попадает в один из двух вариантов – неизменное либо запрещенное (для одного из вариантов потребуется операция редактирования). Правила редукции заключаются в следующем: если две неизменных дуги являются смежными, третья дуга порождаемого ими треугольника также должна быть неизменной; если смежными являются неизменная и запрещенная дуги, третья дуга порождаемого ими треугольника должна быть запрещенной.
На рис. 1 представлен пример подобного ветвления.
На рис. 1 представлен пример подобного ветвления.
Используя усовершенствованный метод поиска места для всех возможных вариантов и для различения всех ветвлений одного варианта, Грэмм и коллеги [3] разработали несколько алгоритмов поиска по дереву для задач модификации графов.
Используя усовершенствованный метод поиска места для всех возможных вариантов и для различения всех ветвлений одного варианта, Грэмм и коллеги [3] разработали несколько алгоритмов поиска по дереву для задач модификации графов.
Строка 48: Строка 48:
(n, 3)-MAXSAT, мера величины m 2 1.341 1.2366 [2]
(n, 3)-MAXSAT, мера величины m 2 1.341 1.2366 [2]
(n, 3)-MAXSAT, мера величины l 2 1.1058 1.0983 [2]
(n, 3)-MAXSAT, мера величины l 2 1.1058 1.0983 [2]


== Применение ==
== Применение ==
4551

правка

Навигация