4501
правка
Irina (обсуждение | вклад) Нет описания правки |
Irina (обсуждение | вклад) Нет описания правки |
||
Строка 47: | Строка 47: | ||
Первый этап заменяется алгоритмом на основе произведения (n, n)-Романи, а второй этап модифицируется таким образом, чтобы иметь дело с длинами путей, а не расстояниями. | Первый этап заменяется алгоритмом на основе произведения (n, n)-Романи, а второй этап модифицируется таким образом, чтобы иметь дело с длинами путей, а не расстояниями. | ||
Заметим, что граница M была заменена на | Заметим, что граница M была заменена на <math>\ell</math>M в произведении матриц расстояния на первом этапе. Игнорируя полилогарифмические коэффициенты, получаем время исполнения для первого этапа – <math>\tilde{O}(n^{\omega} r^2 M) \, </math>. Мы предполагаем, что M соответствует <math>O(n^k) \, </math> для некоторого константного k. Сравнивая эту сложность со сложностью второго этапа, <math>O(n^3/r) \, </math>, получаем полное время вычисления <math>\tilde{O}(n^{(6 + \omega)/3} M^{1/3}) \, </math> при выборе <math>r = O(n^{(3 - \omega)/3} M^{-1/3}) \, </math>. Чтобы время исполнения оказывалось меньше кубического, значение M должно почти совпадать с <math>O(n^{0.624}) \, </math>. | ||
== Основные результаты == | |||
Цвик улучшил алгоритм Алона-Галила-Маргалита в нескольких отношениях. Самым серьезным улучшением стало снижение времени нахождения кратчайших путей между всеми парами с O(n2.688) до O(n2.575) для дуг единичной стоимости. Наибольшее ускорение в алгоритме Алона-Галила-Маргалита [1] было достигнуто в быстрой операции булева произведения матриц, а в алгоритме Такаоки [9] – в быстром умножении матриц расстояния по Романи; в обоих случаях мы имели дело с быстрым матричным умножением квадратных матриц. | Цвик улучшил алгоритм Алона-Галила-Маргалита в нескольких отношениях. Самым серьезным улучшением стало снижение времени нахождения кратчайших путей между всеми парами с O(n2.688) до O(n2.575) для дуг единичной стоимости. Наибольшее ускорение в алгоритме Алона-Галила-Маргалита [1] было достигнуто в быстрой операции булева произведения матриц, а в алгоритме Такаоки [9] – в быстром умножении матриц расстояния по Романи; в обоих случаях мы имели дело с быстрым матричным умножением квадратных матриц. | ||
правка