Алгоритм DC-дерева для k серверов на деревьях: различия между версиями

Перейти к навигации Перейти к поиску
нет описания правки
Нет описания правки
Строка 21: Строка 21:




Пусть T – дерево, согласно вышеприведенному определению. Пусть даны текущая конфигурация сервера S = {<math>s_{1}</math>, ..., <math>s_{k}</math>}, где <math>s_{k}</math> обозначает местоположение сервера j, и точка запроса r; алгоритм выполняет перемещение нескольких серверов, один из которых окажется в результате в точке r. Для двух точек x, y T, обозначим через [x; y] уникальный путь из x в у в дереве T. Сервер j называется активным, если не существует другого сервера в [<math>s_{j}</math>, r] – {<math>s_{j}</math>}, и j является сервером с минимальным индексом, расположенным в s<math>_{j}</math> (последнее условие необходимо только для разрыва связей).
Пусть T – дерево, согласно вышеприведенному определению. Пусть даны текущая конфигурация сервера S = {<math>s_{1}</math>, ..., <math>s_{k}</math>}, где <math>s_{k}</math> обозначает местоположение сервера j, и точка запроса r; алгоритм выполняет перемещение нескольких серверов, один из которых окажется в результате в точке r. Для двух точек x, y <math>\in </math> T, обозначим через [x; y] уникальный путь из x в у в дереве T. Сервер j называется активным, если не существует другого сервера в [<math>s_{j}</math>, r] – {<math>s_{j}</math>}, и j является сервером с минимальным индексом, расположенным в s<math>_{j}</math> (последнее условие необходимо только для разрыва связей).


Алгоритм DC-TREE
Алгоритм DC-TREE
4501

правка

Навигация