Граф Петерсена

Материал из WikiGrapp
Версия от 16:37, 1 февраля 2011; KEV (обсуждение | вклад)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Граф Петерсена (J.Petersen, 1891) — граф [math]\displaystyle{ P_{10}( = P) }[/math], допускающий следующее представление:

J.Petersen.png

Пусть [math]\displaystyle{ \Omega = \{1,2,3,4,5\} }[/math] — 5-элементное множество. Вершины графа [math]\displaystyle{ P_{10} }[/math] — это двухэлементные подмножества из [math]\displaystyle{ \Omega }[/math]. Две вершины в [math]\displaystyle{ P_{10} }[/math] смежны тогда и только тогда, когда соответствующие им подмножества не пересекаются. Граф Петерсена представляет собой сумму 1-фактора и 2-фактора, состоящего из двух 5-циклов. Граф Петерсена есть наименьший 3-регулярный граф с обхватом 5, без гамильтонова цикла, с повышенным хроматическим числом.

Гиперсетью Петерсена называется граф [math]\displaystyle{ HP_{n} = Q_{n-3} \times P }[/math], где [math]\displaystyle{ Q_{n-3} }[/math][math]\displaystyle{ (n-3) }[/math]-мерный гиперкуб.

[math]\displaystyle{ n }[/math]-складной граф Петерсена ([math]\displaystyle{ n }[/math]-folded Petersen graph) есть граф [math]\displaystyle{ FP_{n} = \underbrace{P \times \cdots \times P}_{n} }[/math]. Здесь [math]\displaystyle{ \times }[/math] обозначает декартово произведение.

Литература

  • Лекции по теории графов / В.А.Емеличев, О.И.Мельников, В.И.Сарванов, Р.И.Тышкевич. — М.: Наука, 1990.
  • Харари Ф. Теория графов. — М.: Мир, 1973.
  • Workshop. Utrecht, 1993 // Lect. Notes Comp. Sci., 1994, vol. 790.