4625
правок
KEV (обсуждение | вклад) Нет описания правки |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Строго хордальный граф''' (''[[Strongly chordal graph]]'') | '''Строго хордальный граф''' (''[[Strongly chordal graph]]'') — | ||
Пусть <math>N(v)</math> | Пусть <math>\,N(v)</math> — [[окрестность вершины]] <math>\,v</math> и пусть <math>N[v] = N(v) \cup | ||
\{v\}</math> | \{v\}</math> — замкнутая окрестность вершины <math>\,v</math>. Пусть <math>G_{i} = G(\{v_{i}, | ||
\ldots, v_{n}\})</math>, тогда <math>N_{i}[v]</math> есть замкнутая окрестность <math>v</math> в | \ldots, v_{n}\})</math>, тогда <math>\,N_{i}[v]</math> есть замкнутая окрестность <math>\,v</math> в | ||
<math>G_{i}</math>. Упорядочение вершин <math>(v_{1}, \ldots, v_{n})</math>называется | <math>\,G_{i}</math>. Упорядочение вершин <math>(v_{1}, \ldots, v_{n})</math> называется | ||
''строго элиминирующим порядком'', если для всех <math>i | ''строго элиминирующим порядком'', если для всех <math>i | ||
\in \{1, \ldots, n\}</math> имеет место включение <math>N_{i}[v_{j}] \subseteq | \in \{1, \ldots, n\}</math> имеет место включение <math>N_{i}[v_{j}] \subseteq | ||
N_{i}[v_{k}]</math>, когда <math>v_{j}, \, v_{k} \in N_{i}[v_{i}]</math> и <math>j < k</math>. | N_{i}[v_{k}]</math>, когда <math>v_{j}, \, v_{k} \in N_{i}[v_{i}]</math> и <math>\,j < k</math>. | ||
[[Граф]] <math>G</math> называется ''строго хордальным'', | [[Граф]] <math>\,G</math> называется ''строго хордальным'', | ||
если <math>G</math> допускает строго элиминирующий порядок. | если <math>\,G</math> допускает строго элиминирующий порядок. | ||
==Литература== | ==Литература== | ||
* Евстигнеев В.А., Касьянов В.Н. Теория графов: алгоритмы обработки бесконтурных графов. — Новосибирск: Наука. Сиб. отд-ние, 1998. |