Eccentricity of a vertex: различия между версиями
Glk (обсуждение | вклад) (Новая страница: «'''Eccentricity of a vertex''' --- эксцентриситет вершины. Let <math>d(x,y)</math> be the distance in a graph <math>G</math>. Then the '''ecce…») |
Glk (обсуждение | вклад) Нет описания правки |
||
Строка 8: | Строка 8: | ||
equal to <math>diam(G)</math> is called a '''diametral chain'''. | equal to <math>diam(G)</math> is called a '''diametral chain'''. | ||
==See also== | ==See also== | ||
*''Quasi-diameter, Quasi-radius''. | *''Quasi-diameter'', | ||
*''Quasi-radius''. |
Текущая версия от 14:09, 6 апреля 2011
Eccentricity of a vertex --- эксцентриситет вершины.
Let [math]\displaystyle{ d(x,y) }[/math] be the distance in a graph [math]\displaystyle{ G }[/math]. Then the eccentricity [math]\displaystyle{ e(v) }[/math] of a vertex [math]\displaystyle{ v }[/math] is the maximum over [math]\displaystyle{ d(v,x), \; x \in V(G) }[/math]. The minimum over the eccentricities of all vertices of [math]\displaystyle{ G }[/math] is the radius [math]\displaystyle{ rad(G) }[/math] of [math]\displaystyle{ G }[/math], whereas the maximum is the diameter [math]\displaystyle{ diam(G) }[/math] of [math]\displaystyle{ G }[/math]. A pair [math]\displaystyle{ x, y }[/math] of vertices of [math]\displaystyle{ G }[/math] is called diametral iff [math]\displaystyle{ d(x,y) = diam(G) }[/math]. A chain in [math]\displaystyle{ G }[/math] which length is equal to [math]\displaystyle{ diam(G) }[/math] is called a diametral chain.
See also
- Quasi-diameter,
- Quasi-radius.